GARMIN GTN 750
SAMPLE TRAINING SYLLABUS
AND FLIGHT LESSONS
FOR USE BY
FLIGHT SCHOOLS & FLYING CLUBS
GTN 750 Sample Training Syllabus and Flight Lessons

1 INTRODUCTION

1.1 Overview

2 HOME STUDY WORKSHEETS

- Objective
- Elements
- Schedule
- Equipment
- Student Actions
- Completion Standards

2.1 GTN 750 Home Study 1
Worksheet – Use of GPS in lieu of other avionics, regulations

2.2 GTN 750 Home Study 2
Worksheet – Terminology Review

2.3 GTN 750 Home Study 3
Worksheet – WAAS Review

2.4 GTN 750 Home Study 4
Worksheet – COM and VLOC Operation

2.5 GTN 750 Home Study 5
Worksheet – Direct-to and Flight Plan Navigation

2.6 GTN 750 Home Study 6
Worksheet – Arrival, Departure, and Approach Procedure Operation

2.7 GTN 750 Home Study 7
Worksheet – GTN 750 Series Display Interfaces; TIS

2.8 GTN 750 Home Study 8
Worksheet – GTN 750 Series Display Interfaces; GDL 69 Weather

2.9 GTN 750 Home Study 9
The Role of Avionics in Aeronautical Decision Making and Single-Pilot Resource Management

3 GTN 750 FLIGHT ORIENTATION

- Objective
- Elements
- Schedule
- Equipment
- Student’s Actions
- Completion standards

3.1 Lesson 1: GTN 750 Introduction - Cross-Country Flight

3.2 Lesson 2: Local Operational Flight Review

3.3 Lesson 3: GTN 750 Dual Installation Introduction

3.4 Lesson 4: Dual Installation MFD Operations
1 INTRODUCTION

In flight schools, flying clubs and aircraft rental organizations, pilots are often required to learn how to operate the various types and makes of avionics installed in the rental fleet. In most cases, no specific training is provided on this equipment other than for rudimentary operation and minimum functions; in some cases no training is provided at all.

In modern aircraft, a number of new navigation techniques and pieces of equipment are available that are designed to enhance the safety of flight operations in visual and instrument meteorological conditions. Advances in navigation technology can provide the greatest benefits in situational awareness and help reduce the cost of flight operations by allowing more direct routes and simplified approach procedures.

Of all of these advances, none of them alone can bring about a major change in the accident rate of general aviation aircraft. Pilot training and periodic evaluation are key to realizing the safety benefits of new technology and reducing accident rates. The combination of technology and pilot training will help increase safety, lower insurance costs, and improve the public perception of general aviation.

1.1 OVERVIEW

The enclosed sample syllabi and lesson plans are designed to be incorporated into existing flight training/aircraft checkout/recurrent qualification programs.

The syllabi and lesson plans are valid for both GTN 750 series Garmin avionics. There are 3 main training types that this material may be used for: home study, flight checkout, and recurrent.

The home study portion is designed to prepare the pilot for use of the avionics and to maximize the flight training segment that follows. This part of the materials is for use with any pilot who plans to fly aircraft equipped with GTN 750 avionics. It can be incorporated in any stage of pilot training including: private pilot, instrument, commercial, as well as aircraft checkouts, recurrent training, instrument proficiency checks (IPCs), and flight reviews.

The flight training segments emphasize scenario-based training. These flights are designed to be cross-country flights resembling normal flight operations. The en-route segment is ideal for standard air work and provides an opportunity to train a pilot in both VFR and simulated IFR conditions quickly. It challenges the pilot’s ability to respond to a suddenly increased workload while testing his or her ability to properly use the avionics systems.

The recurrent training portion uses the same sample enclosed materials for use in conjunction with insurance qualifications, IPCs, or flight reviews and is equally well suited for each. The structure remains the same and is based around the home study review of the avionics in preparation for the flight segment. It encourages use of all system capabilities which, depending on the pilot’s typical flight operations, may not be used in the normal course of the flight.

These lessons are only sample lesson plans and are designed to be used in conjunction with other programs. Suggestions and recommendations are welcome and will be taken into consideration in future document revisions.

Disclaimer: These documents are samples only and are provided solely as tools to help Certified Flight Instructors develop their own training programs. It is also the sole responsibility of the CFI and pilot in training to ensure that training is completed to an appropriate level of proficiency.
2 HOME STUDY WORKSHEETS

OBJECTIVE
To develop a basic level of knowledge surrounding the operation of Garmin GTN 750 avionics prior to the commencement of actual flight training.

ELEMENTS
- Terminology Review
- Review of requirements for the use of GPS in lieu of other avionics equipment
- Communications radio operation
- VOR/LOC (VLOC) operation
- GPS operation
- Additional interfaces and associated operations
- Avionics use as an aid to the aeronautical decision making process
- PC simulator exercises

SCHEDULE
Each lesson is designed to take approximately 1 to 2 hours.

EQUIPMENT
- GTN 750 Pilot's Guides and Quick References
- GTN 750 Interface Addendum
- GTN 750 PC simulator
- Lessons
- Worksheets

STUDENT ACTIONS
Complete all lessons prior to arriving for training/checkout flight(s).

COMPLETION STANDARDS
Satisfactory completion of all worksheets/lessons prior to flight training as determined by instructor.
2.1 GTN 750 HOME STUDY 1

WORKSHEET – USE OF GPS IN LIEU OF OTHER AVIONICS, REGULATIONS

After reviewing AIM, answer the following questions:

1) In general, can the GTN 750 be used for IFR operations in place of ADF and/or DME equipment?

2) Describe the requirements for determining aircraft position over a DME fix using GPS.

3) Describe the requirements for flying a DME arc using GPS.

4) Describe the requirements for holding over an NDB/compass locator using GPS.

5) Must the Jeppesen navigation database be current to fly approaches under IFR?

6) What does the abbreviation RAIM stand for?

7) For preflight preparation, how can you obtain GPS RAIM information?

8) While flying an approach, what should the pilot do if an INTEG (LOI) warning is received prior to arrival at the Final Approach Waypoint?

9) Explain the difference between fly-over and fly-by waypoints and draw a picture of their approach chart symbols.

10) On some approaches, the heading information portrayed on the GPS is slightly different than the heading shown on the chart; why does this happen?
2.2 GTN 750 HOME STUDY 2

WORKSHEET – TERMINOLOGY REVIEW

After reviewing the GTN 750 Pilot’s Guide and Reference Manual, answer the following questions:

1) VLOC refers to what capability in the GTN 750 units?

2) Define DTK, TRK, XTK and their relationship to each other.

3) Define and describe the relationship between VNAV and VSR.

4) What does ESA stand for and what is its purpose?

5) What does the abbreviation FPL stand for?

6) What is the difference between ETA and ETE?

7) What is the difference between HDG and TRK?

8) What is the difference between MSA and ESA?

9) The satellite status page of the GTN 750 units list VFOM, HFOM, and EPU. What is the definition of each of these acronyms?

10) What does OBS mean?

11) The term SUA is used as a general reference to what data contained in the Jeppesen aviation database?
WORKSHEET – WAAS REVIEW

After reviewing the GTN 750 Pilot Guide, Reference Manual and AIM answer the following questions.

1) What does WAAS stand for?

2) Are WAAS approaches precision approaches?

3) What is an LNAV/VNAV approach?

4) What is an LPV approach?

5) What is an LNAV+V approach?

6) What are the differences between the three approaches above and what are the limitations if any?

7) When does the CDI scale transition begin from Enroute mode to Terminal mode?

8) If “DR” Annunciation appears what are the two main things a pilot must do and what advisories will not be available?

9) How can a pilot stop Terrain nuisance alerts when flying in unique terrain areas?

10) What is your indication that WAAS is not turned on?

11) What is the Approach Channel?

12) Where do you find the Approach Channel?

13) How and what Page Group do you load an approach using the approach channel?

14) How do you turn WAAS on if you determine it is off?
2.4 GTN 750 HOME STUDY 4

WORKSHEET – COM AND VLOC OPERATION

After reviewing the GTN 750 Pilot’s Guide, complete the following exercises using the Garmin GTN 750 PC simulation device.

Exercise 1

1) Use the simulation device to manually tune the COM radio to the CTAF of 122.7 and make it the active frequency.
2) Tune the VLOC to the VOR frequency 114.0 and make it the active frequency.
3) Set the unit so that the external CDI is tracking the tuned VOR instead of GPS.

Exercise 2

1) Initialize the simulation device position to KMKC (Wheeler Downtown, Kansas City, MO).
2) Use the Waypoint Function Icon on the GTN 750 trainer to find the ATIS frequency for KMKC and automatically tune the COM radio.
3) Make the ATIS frequency active, then tune the Ground frequency in the same manner.

Exercise 3

1) Initialize the simulation device position to KMKC (Wheeler Downtown, Kansas City, MO).
2) Locate the Nearest VOR page using the Nearest Function Icon, find ANX (Napoleon), and automatically tune the VLOC receiver to it.
3) Make ANX the active frequency and ensure that the external CDI is set to track the VOR.

Exercise 4

1) Use the simulation device to automatically tune the COM radio to the Tower or CTAF frequency of your home airport, using the database without using the Nearest page.
2.5 GTN 750 HOME STUDY 5

WORKSHEET – DIRECT-TO AND FLIGHT PLAN NAVIGATION

After reviewing the GTN 750 Pilot’s Guide, complete the following exercises using the Garmin GTN 750 PC simulation device.

Exercise 1
1) Using the simulation device, initialize the simulation device position at KOSH (Oshkosh WI).
2) Enter a Direct-to navigation to KMSN (Madison, WI).

Exercise 2
1) Using the simulation device, initialize the simulation device position at KOSH (Oshkosh WI).
2) Create a flight plan using the active flight plan page to go to KALO (Waterloo, IA) via Dells (DLL) VORTAC and the Waukon (UKN) VORTAC.

Exercise 3
1) Using the simulation device, initialize the simulation device position at KAPA (Centennial Airport, Denver, CO).
2) Create a flight plan to KGJT (Walker, Grand Junction, CO Airport) via the Red Table (DBL) VOR/DME and the Rifle (RIL) VOR/DME.
3) Once over the Red Table VOR/DME, proceed direct to KGJT by highlighting KGJT in the flight plan and using the Direct-to key.

Exercise 4
1) Using the simulation device, initialize the simulation device position at KAPA (Centennial Airport, Denver, CO).
2) Create a flight plan to KGCN (Grand Canyon National Park, AZ) via Blue Mesa (HBU) VORTAC, Farmington (FMN) VORTAC and the Tuba City (TBC) VORTAC.
3) Once over the Blue Mesa VORTAC, proceed direct to KGCN.
4) While en route to KGCN, activate and join the leg from the Tuba City VORTAC to KGCN.
2.6 GTN 750 HOME STUDY 6

WORKSHEET – ARRIVAL, DEPARTURE, AND APPROACH PROCEDURE OPERATION
After reviewing the GTN 750 Pilot's Guide, complete the following exercises using the Garmin GTN 750 PC simulation device.

NOTE: In these exercises be sure to note the difference in Loading an approach and Activating an approach. Also, review the missed approach operations with each lesson, noting the pilot actions that are required to continue on a missed approach procedure.

Exercise 1
1) Using the simulation device, initialize the simulation device position at KPNC (Ponca City, OK).
2) Create a flight plan going direct to KICT (Wichita Mid-Continent, Wichita, KS).
3) When 40nm outside of Wichita, load and activate the ILS 1R approach into KICT via the JAMEY IAF.

Exercise 2
1) Using the simulation device, initialize the simulation device position at KMCI (Kansas City International, Kansas City, MO).
2) Create a flight plan to KSTL the Lakes Five Departure via the Columbia transition (LAKESS.CO).
3) Load and activate the RNAV (GPS) RWY 12L approach into St. Louis International using Vectors-To-Final.

Exercise 3
1) Using the simulation device, initialize the simulation device position at KICT (Wichita Mid-Continent, Wichita, KS).
2) Create a flight plan going direct to KMKC (Wheeler Downtown, Kansas City, MO) using the Jayhawk Five Arrival, via the Emporia Transition (EMP.JHAWKS).
3) Load and activate the GPS RWY 3 approach using Vectors-To-Final.

Exercise 4
1) Using the simulation device, initialize the simulation device position at KICT (Wichita Mid-Continent, Wichita, KS).
2) Create a flight plan going to KIXD (New Century Air Center, Olathe, KS) via the Emporia (EMP) VORTAC.
3) As you approach New Century, select the RNAV (GPS) 36 approach using the WAAS channel (81807) entry procedure then useing the transition touch key select the UNOXY IAF transition.
Exercise 5

1) Using the simulation device, initialize the simulation device position at 0C0 (Dacy, Harvard, IL).

2) Using the map pointer by touching the screen, pan to and place it on KRFD (Chicago Rockford International, Chicago Rockford, IL) and push the Direct-to key.

3) Load and activate the RNAV 01 (GPS) approach via vectors.

4) Fly a parallel course and vector to intercept final approach course to FAF (FANGU).

NOTE: During Step 4 of Exercise 5, ‘SUSP’ will be displayed below and to the right of the CDI key and the OBS key will display unsupend the OBS indicator (or HSI) needle on the GDU 620 will be at full-scale deflection until the aircraft is within approximately 5 miles of the FAF. The needle (on the OBS indicator or HSI) will move off of full-scale deflection and the ‘SUSP’ annunciation will be removed as the final approach course is intercepted.
2.7 GTN 750 HOME STUDY 7

WORKSHEET – GTN 750 SERIES DISPLAY INTERFACES; TIS

1) What are the 2 main types of information that may be displayed (when appropriate equipment is installed) on the GTN 750 series units?

2) What does TIS stand for and how does it work?

3) At what ranges (distance and altitude) will TIS display other aircraft?

4) Can TIS data be used as a sole means of traffic avoidance in IMC (instrument meteorological conditions)?

5) Approximately how old is TIS data when displayed?

6) At what distances and altitudes relative to your aircraft will TIS provide a Traffic Advisory?

7) TIS icons on the map page are either open diamonds or solid yellow circles. What is the difference between the two when deciding which aircraft is a threat?

8) TIS icons have a line protruding from them. What does the line represent?

9) What information is displayed next to the TIS traffic icons?

Note: The GTN 750 series units will also display L3 (formerly Goodrich) SKY497 Traffic and Avidine TAS 600. Please refer to the manufacturer’s documentation for the proper use and limitations of this additional equipment.
2.8 GTN 750 HOME STUDY 8

WORKSHEET – GTN 750 SERIES DISPLAY INTERFACES; GDL 69 WEATHER

1) What types of weather information can be displayed on a GTN 750 series units when a GDL 69 data link receiver is installed?

2) METARs are available in two different formats; what are they?

3) What are the main limitations to using NEXRAD data?

4) There are multiple weather products available on the dedicated weather pages. What are they?

5) Can NEXRAD weather be overlaid on the GTN 750 Nav page?

6) Where can you go in the unit to find the symbol decoding for graphical METAR information?

7) What are the three different types of Wx packages available?

Note: The GTN 750 series units will also display L3 (formerly Goodrich) WX-500 derived lightning detection. Please refer to the manufacturer's documentation for proper use of this additional equipment.
2.9 GTN 750 HOME STUDY 9

THE ROLE OF AVIONICS IN AERONAUTICAL DECISION MAKING AND SINGLE-PILOT RESOURCE MANAGEMENT

The advent of new avionics technologies has brought significant gains for pilots in the area of in-flight aeronautical decision-making (ADM). Traffic Information Service (TIS) over the Mode S data link is one example of the relatively low cost and highly valuable type of data available to the general aviation pilot to help maintain situational awareness in high traffic environments. Data link weather is another shining example of how technology delivers more information for flight planning and decision making loop at a much lower price of acquisition.

Although such tools offer numerous safety and operational advantages, it should be noted that increased technical capabilities often tempt pilots to operate outside of their personal (or even legal) limits. The availability of GPS and moving map systems, coupled with traffic and near real-time weather information in the cockpit, may lead pilots to believe they are protected from the dangers inherent to “scud running,” or otherwise operating in marginal weather conditions. While advanced cockpit technologies may mitigate certain risks, it is by no means a substitute for sound ADM. The challenge is this: How should a pilot use this new information in flight to improve the safety of flight operations? The answer to this question lies in how well the pilot understands the information, its limitations and how best to integrate this data into the ADM process.

Items such as TIS provide a strong aid to locating traffic in a VFR environment, yet they should not be a substitute for “see and avoid” technique. A pilot who receives a TIS Traffic Alert should visually identify the other traffic and react accordingly. Waiting until the last minute to use this data then scanning for traffic may very well prove too late depending on the closure rate. Instead, the pilot should monitor the TIS data continuously in an effort to visually acquire traffic at the maximum distance.

With readily available data link weather, which provides NEXRAD weather images similar to those found on the Internet, pilots now have greater weather awareness in the cockpit. While data link weather is a powerful new tool, it is not a direct replacement for airborne weather radar. Data link weather is not real-time information and is not detailed enough for a pilot to use in an attempt to penetrate a thunderstorm. Instead, we start to pick up a common thread from the above discussion of TIS: The information is not for last minute use; it should be monitored and it is a planning tool. NEXRAD weather does allow the pilot to develop an idea of the scope of a storm that is not available from airborne weather radar.

NEXRAD weather data, coupled with the METAR reporting capability of most systems, is best used for in-flight planning and deviation strategy development. By continuously monitoring the weather situation in the cockpit, the pilot can make better choices about diverting to other airports and/or changing the route of flight. As the pilot becomes more familiar with the system(s) and is able to correlate the data presentation with the actual weather environment more accurately, NEXRAD will come to enhance his or her decision making process and further the safety of flight.

Last but not least, the use of GPS (particularly that of mapping units) opens up new worlds of possibility in maintaining situational awareness and in helping to reduce the navigational workload when deviating from an established flight plan. Many pilots focus on the need to enter a waypoint first before they deviate. In reality, pilots should refer to the map display when possible and commence a turn-away from the dangerous situation (eg. thunderstorm) while notifying ATC of the change of heading. When the workload decreases and safety of continued flight is ensured, they should then start to focus on resuming navigation to the destination and entering the needed waypoints. It is also important to note that pilots should consider having a back-up or secondary means to navigate or communicate in the event of a primary equipment failure.
As more tools are added to the general aviation cockpit in the form of terrain depictions, TAWS, etc., pilots should learn the limitations of the tools and then integrate the tools’ strengths into their own ADM process. When evaluating the ADM process, the key is planning as far ahead as possible to maximize the utility of the information at hand. This ability to “stay ahead of the airplane” when referring to managing flight performance is of equal value and force in using modern avionics. As the old saying goes, “follow the six P’s; Proper Prior Planning Prevents Poor Performance.”
3 GTN 750 FLIGHT ORIENTATION

The following sample lessons are scenario-based and will allow the instructor to maximize the impact of the training with the student, while combining a number of elements into a single flight. An example of a scenario-based training flight would start off with an instrument departure then transition to the en-route portion of the flight. During this portion of the flight, standard air work maneuvers may be completed, such as stalls, slow flight, performance maneuvers, etc. Once the air work is completed, the student should transition back to instrument flight and complete the remainder of the flight through the terminal and approach phases, as desired.

Below is a sample syllabus encompassing the avionics for the flight portion:

OBJECTIVE

- To develop the student’s ability to confidently operate GTN 750 equipment while operating in the National Airspace System (NAS).

ELEMENTS

- Flight Planning
- Communications operation
- Navigation operation
- Flight Plan, Direct-to and Approach operations
- Unit, MFD data field selection and configuration
- Use of additional data (Weather, Traffic) and the aeronautical decision making process

SCHEDULE

- Each lesson is designed to take approximately 2-3 hours.

EQUIPMENT

- GTN 750 Pilot’s Guides and Quick References
- Lessons
- Notepaper
- View limiting device (Note: For the first flight or two, the student may or may not want to have the hood on to help him/her acclimate to the cockpit environment)
- Headset (optional)
- Aircraft (be sure to get it scheduled!)

STUDENT’S ACTIONS

- Has completed all ground lessons prior to arriving for training/checkout flight(s).

COMPLETION STANDARDS

- Satisfactory completion of all flight training as determined by instructor.
3.1 LESSON 1: GTN 750 INTRODUCTION - CROSS-COUNTRY FLIGHT

<table>
<thead>
<tr>
<th>Student:</th>
<th>Date:</th>
</tr>
</thead>
</table>

Objective
To develop the student’s ability to use the key features in the GTN 750 in an IFR environment.

Elements
- Planning and use of ATIS and other airport/weather information
- Unit page/screen navigation
- Communications operation
- Flight plan entry and manipulation
- Approach selection and operation
- Audio panel operation

Schedule
- Pre-flight briefing and review of student’s preparations – 30 min
- Student practice – duration of flight (approximately 1 hr)
- Post-flight critique – 30 min
- Assignment for further student review – 5 min

Equipment
- Airplane
- POH/AFM (GTN 750 Pilot’s Guide)
- Charts appropriate to flight
- Headset
- Note-taking materials

Instructor’s actions
Preflight
- Explain objective
- Assign route of flight
- Describe typical operation flow
- Describe common errors

In-flight
- Coach student performance

Post-flight
- Critique

Student’s actions
- Ask questions regarding objective, elements and common errors
- Perform operations as directed
- Post-flight – ask pertinent questions

Completion standards
Student should exhibit knowledge of the proper methods for data entry, communication/navigation frequency selection, flight plan entry, in-flight routing changes, approach selection and activation, indicator annunciation, and flight data display configuration for the various phases of IFR flight.

Possible errors to watch for
- Failure to use both COM radios (dual installations)
- Loading but not activating an approach
- Improper CDI output selection in GTN 750 (GPS when should be VLOC and vice versa)
- Use of Direct-to navigation when Flight Plan is more appropriate for long route clearances
3.2 Lesson 2: Local Operational Flight Review

<table>
<thead>
<tr>
<th>Objective</th>
<th>To develop the student's ability to use the key features in the GTN 750 in an IFR environment.</th>
</tr>
</thead>
</table>
| Elements | - Planning and use of ATIS and other airport/weather information
 - Unit page/screen navigation
 - Communications operation
 - Flight plan entry and manipulation
 - Approach selection and operation
 - Audio panel operation |
| Schedule | - Pre-flight briefing and review of student's preparations – 30 min
 - Student practice – 1.5 hrs
 - Post-flight critique – 30 min
 - Assignment for further student review – 5 min |
| Equipment | - Airplane
 - POH/AFM (GTN 750 Pilot's Guide)
 - Charts appropriate to flight
 - Headset
 - Note-taking materials |
| Instructor's actions | Preflight
 - Explain objective
 - Assign route of flight
 - Describe typical operation flow
 - Describe common errors

 In-flight
 - Coach student performance

 Post-flight
 - Critique |
| Student's actions | - Ask questions regarding objective, elements and common errors
 - Perform operations as directed
 - Post-flight – ask pertinent questions |
| Completion standards | Student should exhibit a high degree of knowledge of the proper methods for data entry, communication/navigation frequency selection, flight plan entry, in-flight routing changes, approach selection and activation, indicator annunciation, and flight data display configuration for the various phases of IFR flight. The instructor should not have to provide any operational suggestions, and the student should be able to quickly and confidently make the correct changes to the GTN 750 as required. |
| Possible errors to watch for | - Failure to use both COM radios
 - Loading but not activating an approach
 - Improper CDI output selection in GTN 750 (GPS when should be VLOC)
 - Use of Direct-to navigation when Flight Plan is more appropriate for long route clearances |
3.3 LESSON 3: GTN 750 DUAL INSTALLATION INTRODUCTION

<table>
<thead>
<tr>
<th>Student:</th>
<th>Date:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Objective</th>
<th>To develop the student’s ability to properly manage an integrated dual-installation of GTN 750 avionics stack in an IFR environment.</th>
</tr>
</thead>
</table>
| **Elements** | • Optional audio panel operations if installed
• GTN 750 configuration and operation
• GTX 330 or remote mounted transponder operation and TIS data interpretation
• GDL 69 operation and WX data interpretation and its relation to flight planning |
| **Schedule** | • Pre-flight briefing and review of student’s preparations – 30 min
• Student practice – 2 hrs
• Post-flight critique – 30 min
• Assignment for further student review – 5 min |
| **Equipment** | • Airplane
• POH/AFM (appropriate Pilot’s Guide)
• Charts appropriate to flight
• Note-taking materials |
| **Instructor’s actions** | Pre-flight
• Explain objective
• Assign route of flight
• Assign approach types to be completed
• Assign required operations using TIS and WX data
• Describe typical operation flow
• Describe common errors
In-flight
• Coach student performance
Post-flight
• Critique |
| **Student’s actions** | Ask questions regarding objective, elements, and common errors
Perform operations as directed
Post-flight – ask pertinent questions |
| **Completion standards** | Student should be able to complete basic tasks using all available avionics tools to complete the flight and demonstrate function to instructor as requested. |
Possible errors to watch for

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Failure to use both COM radios.</td>
<td></td>
</tr>
<tr>
<td>2. Loading but not activating an approach.</td>
<td></td>
</tr>
<tr>
<td>3. Improper CDI output selection in GTN 750 (GPS when should be VLOC and vice versa).</td>
<td></td>
</tr>
<tr>
<td>4. Use of Direct-to navigation when Flight Plan is more appropriate for long route clearances.</td>
<td></td>
</tr>
<tr>
<td>5. Not enabling cross-fill function.</td>
<td></td>
</tr>
<tr>
<td>6. Failure to use VNAV/VSR information to help plan descent.</td>
<td></td>
</tr>
<tr>
<td>7. Not setting up displays to maximize the amount of data presented without overlapping data.</td>
<td></td>
</tr>
</tbody>
</table>
3.4 LESSON 4: DUAL INSTALLATION MFD OPERATIONS

<table>
<thead>
<tr>
<th>Student:</th>
<th>Date:</th>
</tr>
</thead>
</table>

Objective
To develop the student’s ability to properly manage an integrated dual-installation of GTN 750 avionics stack in an IFR environment.

Elements
- Operation and configuration of WX interfaces
- Use of WX-500/GDL 69 data as ADM aid
- Operation and configuration of traffic interfaces (SKY 497/Avidyne TAS 600/TIS)
- Use of traffic information as ADM and awareness aid
- Proper use of TAWS/Terrain data

Schedule
- Pre-flight briefing and review of student’s preparations – 30 min
- Student practice – 2 hrs
- Post-flight critique – 30 min
- Assignment for further student review – 5 min

Equipment
- Airplane
- POH/AFM (appropriate Pilot’s Guide)
- Charts appropriate to flight
- Note-taking materials

Instructor’s actions
Preflight
- Explain objective
- Assign route of flight
- Assign approach types to be completed
- Describe typical operation flow
- Describe common errors

In-flight
- Coach student performance

Post-flight
- Critique

Student’s actions
- Ask questions regarding objective, elements, and common errors
- Perform operations as directed
- Post-flight – ask pertinent questions

Completion standards
Student should be able to properly configure and interpret the data that is displayed via the MFD and correctly maneuver the aircraft in response to the presented information.

Possible errors to watch for
- Failure to note the data age for NEXRAD and Stormscope data
- Configuring overlapping data on both GTN
- Not incorporating GTN in instrument scan
- Delayed reaction to warning messages for terrain and traffic and not taking correct action to avoid dangerous conditions
- Not verifying successful self-test of remote equipment