<table>
<thead>
<tr>
<th>Revision</th>
<th>Date of Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8/99</td>
<td>Initial Release</td>
</tr>
<tr>
<td>B</td>
<td>8/00</td>
<td>Revised and Redrawn</td>
</tr>
<tr>
<td>C</td>
<td>11/06</td>
<td>Changed to 8 inch x 8.5 inch format. Added TERRAIN, Additional Features section, and misc. changes</td>
</tr>
<tr>
<td>D</td>
<td>2/07</td>
<td>Updated per Main SW v5.02</td>
</tr>
<tr>
<td>E</td>
<td>10/07</td>
<td>Updated per Main SW v5.03</td>
</tr>
<tr>
<td>F</td>
<td>05/08</td>
<td>Removed Proximity Advisory info from Section 10</td>
</tr>
<tr>
<td>G</td>
<td>08/08</td>
<td>Converted format of figures to accommodate printing process</td>
</tr>
<tr>
<td>H</td>
<td>12/09</td>
<td>Added Section 10.2, GTS 8XX Traffic Systems</td>
</tr>
</tbody>
</table>
WARNING: Navigation and terrain separation must NOT be predicated upon the use of the TERRAIN function. The TERRAIN feature is NOT intended to be used as a primary reference for terrain avoidance and does not relieve the pilot from the responsibility of being aware of surroundings during flight. The TERRAIN feature is only to be used as an aid for terrain avoidance and is not certified for use in applications requiring a certified terrain awareness system. Terrain data is obtained from third party sources. Garmin is not able to independently verify the accuracy of the terrain data.

WARNING: The terrain data should be used only as an aid for situational awareness. Terrain data must not be used as the sole basis for decisions or maneuvers to avoid terrain or obstacles. Terrain data must not be used for navigation.

WARNING: The altitude calculated by GPS 400 GPS receivers is geometric height above Mean Sea Level and could vary significantly from the altitude displayed by pressure altimeters in aircraft. GPS altitude should never be used for vertical navigation. Always use pressure altitude displayed by pressure altimeters in the aircraft.

WARNING: The Jeppesen database used in the GPS 400 system must be updated regularly in order to ensure that its information remains current. Updates are released every 28 days. A database information packet is included in the GPS 400 package. Pilots using an outdated database do so entirely at their own risk.

WARNING: The basemap (land and water data) must not be used for navigation, but rather only for non-navigational situational awareness. Any basemap indication should be compared with other navigation sources.

WARNING: For safety reasons, GPS 400 operational procedures must be learned on the ground.

WARNING: The United States government operates the Global Positioning System and is solely responsible for its accuracy and maintenance. GPS is subject to changes which could affect the accuracy and performance of all GPS equipment. Portions of the Garmin GPS 400 utilize GPS as a precision electronic NAVigation AID (NAVAID). Therefore, as with all NAVAIDs, information presented by the GPS 400 can be misused or misinterpreted and, therefore, become unsafe.
WARNING: Use the GPS 400, Weather Data Link Interface, TIS, and TERRAIN at your own risk. To reduce the risk of unsafe operation, carefully review and understand all aspects of the GPS 400 Pilot’s Guide documentation and the Flight Manual Supplement. Thoroughly practice basic operation prior to actual use. During flight operations, carefully compare indications from the GPS 400 to all available navigation sources, including the information from other NAVAIDs, visual sightings, charts, etc. For safety purposes, always resolve any discrepancies before continuing navigation.

CAUTION: The GPS 400 display screen is coated with a special anti-reflective coating that is very sensitive to skin oils, waxes, and abrasive cleaners. CLEANERS CONTAINING AMMONIA WILL HARM THE ANTI-REFLECTIVE COATING. It is very important to clean the screen using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings.

CAUTION: The Garmin GPS 400 does not contain any user-serviceable parts. Repairs should only be made by an authorized Garmin service center. Unauthorized repairs or modifications could void both the warranty and the pilot’s authority to operate this device under FAA/FCC regulations.

NOTE: All visual depictions contained within this document, including screen images of the GPS 400 panel and displays, are subject to change and may not reflect the most current GPS 400 system. Depictions of equipment may differ slightly from the actual equipment.

NOTE: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE: This product, its packaging, and its components contain chemicals known to the State of California to cause cancer, birth defects, or reproductive harm. This notice is being provided in accordance with California’s Proposition 65. If you have any questions or would like additional information, please refer to our website at www.garmin.com/prop65.
AVIATION LIMITED WARRANTY

All Garmin avionics products are warranted to be free from defects in materials or workmanship for: two years from the date of purchase for new Remote-Mount and Panel-Mount products; one year from the date of purchase for new portable products and any purchased newly-overhauled products; six months for newly-overhauled products exchanged through a Garmin Authorized Service Center; and 90 days for factory repaired or newly-overhauled products exchanged at Garmin in lieu of repair. Within the applicable period, Garmin will, at its sole option, repair or replace any components that fail in normal use. Such repairs or replacement will be made at no charge to the customer for parts or labor, provided that the customer shall be responsible for any transportation cost. This warranty does not apply to: (i) cosmetic damage, such as scratches, nicks and dents; (ii) consumable parts, such as batteries, unless product damage has occurred due to a defect in materials or workmanship; (iii) damage caused by accident, abuse, misuse, water, flood, fire, or other acts of nature or external causes; (iv) damage caused by service performed by anyone who is not an authorized service provider of Garmin; or (v) damage to a product that has been modified or altered without the written permission of Garmin. In addition, Garmin reserves the right to refuse warranty claims against products or services that are obtained and/or used in contravention of the laws of any country.

THE WARRANTIES AND REMEDIES CONTAINED HEREIN ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING ANY LIABILITY ARISING UNDER ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, STATUTORY OR OTHERWISE. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, WHICH MAY VARY FROM STATE TO STATE.

IN NO EVENT SHALL GARMIN BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, WHETHER RESULTING FROM THE USE, MISUSE OR INABILITY TO USE THE PRODUCT OR FROM DEFECTS IN THE PRODUCT. SOME STATES DO NOT ALLOW THE EXCLUSION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Garmin retains the exclusive right to repair or replace (with a new or newly-overhauled replacement product) the product or software or offer a full refund of the purchase price at its sole discretion. SUCH REMEDY SHALL BE YOUR SOLE AND EXCLUSIVE REMEDY FOR ANY BREACH OF WARRANTY.

Online Auction Purchases: Products purchased through online auctions are not eligible for warranty coverage. Online auction confirmations are not accepted for warranty verification. To obtain warranty service, an original or copy of the sales receipt from the original retailer is required. Garmin will not replace missing components from any package purchased through an online auction.

International Purchases: A separate warranty may be provided by international distributors for devices purchased outside the United States depending on the country. If applicable, this warranty is provided by the local in-country distributor and this distributor provides local service for your device. Distributor warranties are only valid in the area of intended distribution. Devices purchased in the United States or Canada must be returned to the Garmin service center in the United Kingdom, the United States, Canada, or Taiwan for service.

To obtain warranty service, contact your local Garmin Authorized Service Center. For assistance in locating a Service Center near you, visit the Garmin Website at ‘http://www.garmin.com’ or contact Garmin Customer Service at 800-800-1020.
SECTION 1: INTRODUCTION

1.1 ACCESSORIES AND PACKING LIST

Congratulations on choosing the finest, most advanced panel mount IFR navigation/communication system available. The GPS 400 represents Garmin’s commitment to provide accurate, easy-to-use avionics.

Before installing and getting started with the GPS 400, please check to see that the package includes the following items. If any parts are missing or damaged, please contact a Garmin dealer immediately.

Standard Package:

- GPS 400 Unit
- NavData® Card
- Terrain Data Card
- Installation Rack
- Connectors
- GPS Antenna
- Pilot’s Guide
- Quick Reference Guide
- Database Subscription Packet
- Warranty Registration Card
- GPS 400 Simulator CD-ROM

The Garmin dealer installs and configures the GPS 400. The GPS 400 is secured in the installation rack with the proper wiring connections performed. After installation, the NavData Card and the TERRAIN Data Card are installed into their correct slots on the front of the unit (see Appendix A). A Garmin dealer can answer any questions about the installation, such as location of antennas or any connections to other equipment in the panel.

NOTE: Help Garmin provide better support by completing on-line registration. Registration ensures notification of product updates, new products, and provides for lost or stolen unit tracking. Have the serial number of the GPS 400 available and connect to the website (www.garmin.com). Look for the product registration link on the home page.
1.2 KEY AND KNOB FUNCTIONS

The GPS 400 is designed to make operation as simple as possible. The key and knob descriptions (Figure 1-1) provide a general overview of the primary function(s) for each key and knob. The takeoff tour (Section 1.3) is intended to provide a brief overview of the primary functions of the GPS 400.

Experiment with the unit and refer to the reference sections for more information.

Data is entered using the large and small knobs. Experiment with them to become efficient at entering data. This greatly reduces the amount of time spent operating the GPS 400 in flight.
Left-hand Knob

(1, 3) – See Appendix A for **NavData and TERRAIN Data Card** insertion and removal.

(2) **Power Knob** – Controls unit power, turn clockwise to turn the unit on.

Right-hand Keys and Knobs

(4) **CLR Key** – Used to erase information, remove map detail, or to cancel an entry. Press and hold the **CLR Key** to immediately display the Default NAV Page.

(5) **Direct-to Key** – Allows the pilot to enter a destination waypoint and establishes a direct course to the selected destination (Section 3).

(6) **RNG Key** – Allows the pilot to select the desired map range. Use the up arrow to zoom out to a larger area, or the down arrow to zoom in to a smaller area.

(7) **MENU Key** – Displays a context-sensitive list of options. This options list allows the pilot to access additional features or make settings changes which relate to the currently displayed page.

(8) **ENT Key** – Used to approve an operation or complete data entry. It is also used to confirm information during power on.

(14) **Large Right Knob (CRSR)** – Used to select page groups: NAV, WPT, AUX, or NRST. With the on-screen cursor enabled, the large **right knob** allows the pilot to move the cursor about the page. The large **right knob** is also used to move the target pointer right (turn clockwise) or left (counterclockwise) when the map panning function is active.

(15) **Small Right Knob (CRSR)** – Used to select pages within one of the groups listed above. Press this knob momentarily to display the on-screen cursor. The cursor allows the pilot to enter data and/or make a selection from a list of options. When entering data, the small knob is used to select the desired letter or number and the large knob is used to move to the next character space. The small **right knob** is also used to move the target pointer up (turn clockwise) or down (counterclockwise) when the map panning function is active.

NOTE: Data is entered using the large and small **right knobs** (Figure 1-2). Experiment with them to become efficient at entering data. **This will greatly reduce the amount of time spent operating the GPS 400 in flight.**

Figure 1-2 Blank Direct-to Page
NOTE: When the GPS 400 displays a list of information that is too long for the display screen, a scroll bar appears along the right-hand side of the display (Figure 1-3). The scroll bar graphically indicates the number of additional items available within the selected category. To scroll through the list, press the small right knob to activate the cursor, then turn the large right knob.

Figure 1-3 Scroll Bar

Bottom Row Keys

(9) **NRST Key** – Displays the Nearest Airports Page. Then, turning the small right knob steps through the NRST pages.

(10) **OBS Key** – Selects OBS mode, which retains the current ‘active to’ waypoint as the navigation reference even after passing the waypoint (i.e., prevents sequencing to the next waypoint). Pressing the OBS Key again returns the unit to normal operation, with automatic sequencing of waypoints. When OBS mode is selected, the pilot may set the desired course to/from a waypoint using the ‘Select OBS Course’ pop-up window, or an external OBS selector on the HSI or CDI.

(11) **MSG Key** – Used to view system messages and to alert the pilot to important warnings and requirements. See Section 12.1 for more information on messages.

(12) **FPL Key** – Allows the pilot to create, edit, activate, and invert flight plans, as well as access approaches, departures, and arrivals. A closest point to flight plan feature is also made available by pressing the FPL Key. See Section 4 for more information on flight plans.

(13) **PROC Key** – Allows the pilot to select and remove approaches, departures, and arrivals from the flight plan. When using a flight plan, available procedures for the departure and/or arrival airport are offered automatically. Otherwise, the pilot may select the desired airport, then the desired procedure.
1.3 TAKEOFF TOUR

Overview

The Garmin GPS 400 provides the pilot accurate navigational data, along with non-precision and precision approach certification in the IFR environment. The takeoff tour is designed to familiarize the pilot with:

- Powering up the unit
- Entering data
- Performing a simple direct-to
- Selecting IFR procedures
- Using some limited flight plans

In addition, this section briefly covers the Default NAV Page, the Map Page, and the NAV/COM Page, which are available as part of the NAV Page Group. These pages are used for most of the in-flight navigation.

The takeoff tour assumes that the unit and antennas have been properly installed and that the GPS 400’s default settings have not been changed. If any of the factory default settings (position format, units of measure, selectable fields, etc.) have been changed, the pictures shown here may not exactly match what is shown on the GPS 400. Prior to using the GPS 400 for the first time, Garmin recommends that the aircraft be moved to a location that is well away from buildings and other aircraft so the unit can collect satellite data without interruption.

This takeoff tour is intended to provide a brief introduction of the GPS 400’s major features. Sections 2 through 12 of this manual describe these features, and others, in additional detail. Refer to these sections, as needed, to learn or review the details regarding a particular feature.

After becoming familiar with the basics, some suggested reading within this Pilot’s Guide includes:

- Flight plan features - Section 4
- IFR procedures - Section 5
- Waypoint information pages (database information) - Section 6
- Unit settings (configuring the unit to the pilot’s preferences) - Section 8

If more information is needed, Garmin’s Customer Service staff is available during normal business hours (U.S. Central time zone) at the phone and fax numbers listed on page ii. Garmin can also be reached by mail (page ii) or at our website address, www.garmin.com.

Powering up the GPS 400

The GPS 400’s Power Knob is located at the top left corner of the unit. Turning it clockwise turns unit power on. After turning the unit on, a welcome page appears briefly while the unit performs a self test, followed sequentially by the Unit Type Page (Figure 1-4) and the Software Versions Page. Then (depending on configuration) the Weather Page, the Traffic Page, the Aviation Data Page, the Land/Terrain/Obstacles Database Page, and the Situational Awareness Page are sequentially displayed.
SECTION 1
INTRODUCTION

The Database Versions Page (Figure 1-5) appears next, which shows the current database information on the NavData Card and Terrain Data cards. Database information highlighted in yellow indicates the database is not within its effective dates. The NavData database is updated every 28 days and must be current for approved instrument approach operations. Information on database subscriptions is available inside the GPS 400 package.

![Figure 1-5 Database Versions Page](image)

Acknowledging the database information:
Press the ENT Key.

Instrument Panel Self-test Page

Once the database has been acknowledged, the Instrument Panel Self-test Page appears (Figure 1-6).

![Figure 1-6 Instrument Panel Self-Test Page](image)

To ensure that the GPS 400 and any connected instruments are working properly, check for the following indications on the CDI/HSI, RMI, external annunciators, and other connected instruments:

- Course deviation - half left/no flag
- TO/FROM flag - TO
- Bearing to destination - 135°
- Distance to destination - 10.0 nm
- All external annunciators (if installed) - on
- Glideslope - half up/no flag
- Time to destination - 4 minutes
- Desired track - 149.5°
- Ground speed - 150 knots

The Instrument Panel Self-test Page (Figure 1-6) indicates the currently selected OBS course, fuel capacity (CAP), fuel on board (FOB), and fuel flow (FF). The fuel capacity, fuel on board, and fuel flow may be manually entered if the installation does not include connection to sensors which automatically provide these figures.

Entering fuel capacity, fuel on board, or fuel flow figures (if not provided by sensors):

1) Turn the large right knob to select the ‘CAP’, ‘FOB’, or ‘FF’ field.

2) Turn the small and large right knobs to enter the desired figure (Figures 1-6 and 1-7), then press the ENT Key.
The Instrument Panel Self-test Page includes selections to set fuel on board (FOB) to full capacity and access the Checklists Page. This allows the pilot to quickly set fuel to full limits and display any checklists that have been entered, such as start up or takeoff checklists.

Setting fuel on board to full (if not provided by sensor):

1) Turn the large right knob to highlight ‘Set Full Fuel?’ (Figure 1-8).

2) Press the ENT Key and verify that fuel on board (‘FOB’) now matches the fuel capacity (CAP) figure. Fuel on board is reduced, over time, based on the fuel flow (FF) figure.

Viewing the Checklists Page:

1) Turn the large right knob to highlight ‘Go To Chklist?’ (Figure 1-9) and press the ENT Key.

2) Turn the large right knob to select the desired checklist, then execute each step (Section 8.3, Utility Page: Checklists) in the selected checklist.

3) After completing the desired checklist(s), press the small right knob to return to the Checklists Page. Press the small right knob again to return to normal operation on the Satellite Status Page or the Map Page.

4) Once instrument operation has been verified with the Instrument Panel Self-test Page displayed, press the ENT Key.

NOTE: The GPS 400 can hold up to nine checklists with up to 30 entries in each checklist.
Satellite Status Page

The Satellite Status Page (Figure 1-10) appears as the GPS 400 attempts to collect satellite information.

An ‘Acquiring’ status is displayed on the Satellite Status Page, and the signal strengths of any satellites received appear as ‘bar graph’ readings. This is a good indication that the unit is receiving signals and a position fix is being determined. Following the first-time use of the GPS 400, the time required for a position fix varies, usually from one to two minutes.

If the unit can only obtain enough satellites for 2D navigation (no altitude), the unit uses the altitude provided by the altitude encoder (if one is connected).

The ‘INTEG’ annunciator (bottom left corner of the screen) indicates that satellite coverage is insufficient to pass built-in integrity monitoring tests. In the example above, not enough satellites are being received to determine a position. The Satellite Status Page shows the ID numbers for the satellites and the relative signal strength of each satellite received (as a bar graph reading).

‘Searching Sky’ indicates that satellite almanac data is not available or has expired (if the unit hasn’t been used for six months or more). This means the unit is acquiring satellite data to establish almanac and satellite orbit information, which can take five to ten minutes. The data is recollected from the first available satellite. The Satellite Status Page displays a ‘Search Sky’ status, and the message annunciator (MSG), above the MSG Key also flashes to alert the pilot of a system message, ‘Searching the Sky’.

Viewing a system message:

Press the MSG Key (Figure 1-11).

The Message Page appears and displays the status or warning information applicable to the receiver’s current operating condition.

Returning to the previous page after viewing a message:

Press the MSG Key again.

NOTE: The GPS 400 utilizes certain software algorithms to ensure reliable GPS receiver operation. Receiver Autonomous Integrity Monitoring (RAIM) and Fault Detection and Exclusion (FDE) are two examples. These features allow navigation during Oceanic/Remote legs of a flight using the GPS 400. For further details, please refer to Sections 8.3 and 11.
Page Groups

<table>
<thead>
<tr>
<th>Page Groups</th>
<th>NAV Group</th>
<th>WPT Group</th>
<th>AUX Group</th>
<th>NRST Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>see Section 2</td>
<td>see Section 6</td>
<td>see Section 8</td>
<td>see Section 7</td>
<td></td>
</tr>
</tbody>
</table>

Table 1-1 Page Groups

The bottom right corner of the screen (Figure 1-12) indicates which page group (Table 1-1) is currently being displayed (NAV, WPT, AUX, or NRST), the number of pages available within that group (indicated by square icons), and the placement of the current page within that group (indicated by a highlighted square icon).

In addition to the NAV Page Group, additional page groups are available for waypoint information (WPT), auxiliary (AUX) functions such as flight planning or unit settings, and listings for nearest (NRST) airports or other facilities.

![Figure 1-12 Current Page and Page Group](image)

NOTE: The NRST Page Group may be accessed by using the large right knob as described in the preceding procedure or by pressing the NRST key.

NAV Pages

There are seven pages available under the NAV Page Group*:

- Default NAV Page
- Map Page
- TERRAIN Page (if configured)
- NAV/COM Page
- Position Page
- Satellite Status Page
- Vertical Navigation Page

The Default NAV Page, the Map Page, and the NAV/COM Page are used for most of the in-flight navigation.

![Position of Current Page within Current Page Group](image)

NOTE: *The NAV Page Group may have eight or nine NAV pages available when the GPS 400 installation includes connection to traffic and/or weather information sources. See Section 10 of this manual for more information.

Selecting the NAV Page Group and display the Default NAV Page:

Press and hold the CLR Key.

Selecting the desired NAV Page:

Turn the small right knob until the desired page is displayed (Figure 1-12).
Map Page

After the GPS 400 acquires satellites and computes a position, the Map Page (Figure 1-13) appears automatically.

The Map Page displays the present position (using an airplane symbol) relative to nearby airports, VORs, NDBs, intersections, user waypoints, and airspace boundaries. The route is displayed as a solid line.

Data fields for destination waypoint (WPT), distance to waypoint (DIS), desired track (DTK), and ground speed (GS) appear on the right-hand side of the display. These fields are user selectable (Section 2.4, Selecting Desired On-screen Data) to allow the pilot to configure the unit. Available settings include: altitude, bearing, enroute safe altitude, estimated time of arrival, minimum safe altitude, and ground track.

A Map Setup Page is provided to designate the maximum range at which each map feature appears. These settings provide an automatic decluttering of the map (based upon preferences) while adjusting the range. See Section 12.3 for definitions of these navigation terms.

While viewing the Map Page, the pilot can quickly declutter and remove many of the background map details by pressing the CLR Key (repeatedly) until the desired detail is depicted.

To change the map range, press the up arrow (to zoom out) or the down arrow (to zoom in) of the RNG (map range) Key. The current map range is depicted in the lower left corner of the Map Display.

Direct-to Navigation

The GPS 400 can use direct point-to-point navigation to provide guidance from takeoff to touchdown, even in the IFR environment. Once a destination is selected, the unit provides speed, course, and distance data based upon a direct course from the present position to the destination. A destination can be selected from any page with the Direct-to Key.

Selecting a direct-to destination:

1) Press the Direct-to Key. The Select Direct-to Waypoint Page appears with the destination field highlighted.

2) Turn the small right knob to enter the first letter of the destination waypoint identifier. The destination waypoint may be an airport, VOR, NDB, intersection, or user waypoint, as long as it is in the database or stored in memory as a user waypoint.

3) Turn the large right knob to the right to move the cursor to the next character position.

4) Repeat steps 2 and 3 to spell out the rest of the waypoint identifier (Figure 1-14).
5) Press the **ENT** Key to confirm the identifier. The ‘Activate?’ function field is highlighted (Figure 1-15).

![Figure 1-15 ‘Activate?’ Highlighted](image)

6) Press the **ENT** Key to activate a direct-to course to the selected destination.

Once a direct-to destination is selected, press and hold the **CLR** Key to display the Default NAV Page.

Default NAV Page

During most flights, the Default NAV Page, the Map Page, and the NAV/COM Page are the primary pages used for navigation.

Selecting the Default NAV Page:

Press and hold the **CLR** Key (Figure 1-16).

![Figure 1-16 Default NAV Page](image)

The Default NAV Page displays a graphic course deviation indicator (CDI), the active leg of the flight plan (as defined by the current ‘from’ and ‘to’ waypoints), and six user-selectable data fields. The default settings for these fields are distance to waypoint (DIS), desired track (DTK), bearing to waypoint (BRG), ground speed (GS), ground track (TRK), and estimated time enroute (ETE). See Section 12.3 for definitions of these navigation terms.

Changing the data fields:

1) From the Default NAV page, press the **MENU** Key and select ‘Change Fields?’ (Figure 1-17).

![Figure 1-17 Default NAV Page Menu](image)

2) Turn the large **right** knob to select the data field to be changed.

3) Turn the small **right** knob to display a list of data options (Figure 1-18).

![Figure 1-18 ‘Select Field Type’ Window](image)

4) Press the **ENT** Key to select the desired data item and return to the Default NAV Page.
NAV/COM Page

From the Default NAV Page, simply turn the small right knob until the NAV/COM Page (Figure 1-19) is displayed.

The NAV/COM Page displays the available frequencies (communication and navigation frequencies are shown for reference only) for the departure airport, any enroute airports which are included in the flight plan, and the final destination airport. When using the direct-to function, frequencies are listed for the airport nearest to the starting position and the destination airport.

Displaying the frequency list for the desired flight plan or direct-to airport:
1) Press the small right knob to activate the cursor on the airport identifier field (in the GPS Window).
2) Turn the small right knob to display the list of airports (departure, arrival, and enroute) for the flight plan or direct-to. Continue to turn the small right knob until the desired airport is selected.
3) Press the ENT Key to display the frequency list for the selected airport.

Displaying frequencies for a different airport along the flight plan.
1) Press the small right knob to highlight the airport identifier field.
2) Turn the small right knob to display the list of airports within the flight plan (Figure 1-20).
3) Continue turning the small right knob to select the desired airport and press the ENT Key.
IFR Procedures

Once the direct-to or flight plan is confirmed, the whole range of instrument procedures is available to the pilot. Departures (SIDs), arrivals (STARs), and non-precision and precision approaches are stored within the NavData Card and are available using the PROC (procedures) Key.

Displaying the Procedures Page:

Press the PROC Key (Figure 1-21).

Selecting a departure, arrival, or an approach:

1) Turn the large right knob to select the desired option (‘Select Departure?’, ‘Select Arrival?’ or ‘Select Approach?’) from the Procedures Page.

2) Press the ENT Key to display a list of available procedures for the departure (when using SIDs) or arrival (when using approaches or STARs) airport.

3) Turn the small right knob to select the desired procedure and press the ENT Key.

4) For approaches, a window appears (Figure 1-22) to select the desired initial approach fix (IAF) or provide a ‘vectors’ option to select just the final course segment of the approach. Turn the small right knob to select the desired option and press the ENT Key. The ‘vectors’ option extends the final inbound course beyond the final approach fix, allowing the pilot to intercept the final course segment beyond its normal limits.

5) For departures and arrivals, a window appears to select the desired transition. Turn the small right knob to select the desired option and press the ENT Key.

In the flight plan or direct-to, the departure or arrival airport is replaced with the sequence of waypoints contained within the selected procedure.
Nearest (NRST) Pages

The NRST Page Group provides detailed information on the nine nearest airports, VORs, NDBs, intersections, and user-created waypoints within 200 nm of the current position. In addition, pages are also provided to display the five nearest center (ARTCC/FIR) and Flight Service Station (FSS) points of communication, plus alert the pilot to any nearby special-use or controlled airspaces.

There are eight pages available in the NRST group:

- Nearest Airport Page
- Nearest NDB Page
- Nearest User Waypoint Page
- Nearest FSS Page
- Nearest Intersection Page
- Nearest VOR Page
- Nearest ARTCC Page
- Nearest Airspace Page

The communication frequencies and runway information may both be examined directly from the Nearest Airport Page.

Displaying the NRST pages:
1) Press the NRST Key to select the Nearest Airport Page (Figure 1-23).
2) Turn the small right knob to select the desired NRST Page.

Displaying a list of nearby airports:
1) Press the NRST Key to select the Nearest Airport Page (Figure 1-23).
2) To scroll through the list, press the small right knob, then turn the large right knob (Figure 1-24).
Viewing additional information for a nearby airport:

1) Press the small **right** knob to activate the cursor.

2) Turn the large **right** knob to select the desired airport from the list.

3) Press the **ENT** Key to display waypoint (WPT) information pages for the selected airport (Figure 1-25).

4) To display runway and frequency information, press the small **right** knob to remove the cursor and turn the small **right** knob to display the desired information page.

The Nearest Airport Page may be used in conjunction with the **Direct-to** Key to quickly set a course to a nearby facility in an in-flight emergency. Selecting a nearby airport as a direct-to destination overrides the flight plan or cancels a previously selected direct-to destination. The pilot will still have the option of returning to the flight plan by cancelling the direct-to; see Section 3.1, Cancelling Direct-to Navigation.

Selecting a nearby airport as a direct-to destination from the Nearest Airport Page:

1) Press the small **right** knob to activate the cursor.

2) Turn the large **right** knob to select the desired airport from the list.

3) Press the **Direct-to** Key.

4) Press the **ENT** Key twice to navigate to the nearby airport.

Selecting a nearby airport as a direct-to destination from the Airport Information Page:

1) Press the **Direct-to** Key.

2) Press the **ENT** Key (Figure 1-26).

3) Press the **ENT** Key again to navigate to the nearby airport.
Nearest (NRST) Airspace Page

The last page in the NRST Page Group, the Nearest Airspace Page (Figure 1-27), provides information for up to nine controlled or special-use airspaces near or in the flight path. Airspace information appears on this page based on the same criteria used for airspace alert messages:

- If the projected course will take the aircraft inside an airspace within the next ten minutes, the message ‘Airspace ahead -- less than 10 minutes’ appears.
- If the aircraft is within 2 nm of an airspace and the current course will take the aircraft inside, the message ‘Airspace near and ahead’ appears.
- If the aircraft is within 2 nm of an airspace and the current course will not take the aircraft inside, the message ‘Near airspace less than 2nm’ appears.
- If the aircraft has entered an airspace, the message ‘Inside airspace’ appears.

By default, airspace alert messages are turned off. When turned on, the message (MSG) annunciator located directly above the MSG Key flashes to alert the pilot to the airspace message. See Section 8.4, Setup 1 Page: Airspace Alarms for information on enabling airspace alert messages.

Viewing an airspace alert message:
1) Press the MSG Key. The Messages Page appears with the alert message (Figure 1-28).

![Figure 1-28 Message Page](image)

2) Press the MSG Key again to return to the previous display.

Note that the airspace alerts are based upon three-dimensional data (latitude, longitude, and altitude) to avoid nuisance alerts. The alert boundaries for controlled airspace are also sectorized to provide complete information on any nearby airspace. Additional information about a nearby airspace (such as controlling agency, frequency, and floor/ceiling limits) is available from the Nearest Airspace Page (Section 7.9).

Viewing additional airspace information:
1) Press the small **right** knob to activate the cursor.
2) Turn the large **right** knob to select the desired airspace from the list.
3) Press the **ENT** Key to view the airspace information.
Flight Plans (FPL)

The GPS 400 lets the pilot create up to 20 flight plans, with up to 31 waypoints in each flight plan. Flight plans are created, edited, and activated using the **FPL** Key. The FPL Page Group includes two pages: the Active Flight Plan Page and the Flight Plan Catalog Page (Figures 1-29 and 1-30). The Active Flight Plan Page provides information and editing features for the flight plan currently in use (referred to as ‘flight plan 00’). The Flight Plan Catalog Page serves as the main page for creating new flight plans, as well as editing or activating previously created flight plans.

Since using flight plans is arguably one of the more complex features of the GPS 400, it will only be discussed briefly here, with focus on creating a new flight plan and activating it to use for navigation. After reading through this brief introduction, answers to additional questions about flight plans can be found in Section 4, Flight Plans.

Creating a new flight plan:
1) Press the **FPL** Key.
2) Turn the small right knob to select the Flight Plan Catalog Page.
3) Press the **MENU** Key to display the Flight Plan Catalog Page Menu (Figure 1-31).
4) Turn the large right knob to select ‘Create New Flight Plan?’ and press the **ENT** Key.
5) The cursor appears on the first waypoint identifier field (located directly below ‘WAYPOINT’). Use the large and small right knobs to enter the identifier of the first waypoint in the flight plan. (The small knob is used to select the desired letter or number and the large knob is used to move to the next character space.)
6) Press the **ENT** Key once the identifier has been selected. The cursor moves to the next blank waypoint identifier field.
7) Repeat steps 5 and 6 until all waypoints for the flight plan have been entered (Figure 1-32).

![Figure 1-32 Enter Flight Plan Waypoints](image)

Once the flight plan is created, it may be activated from the Flight Plan Catalog Page Menu. Activating the flight plan places it into ‘flight plan 00’ (a copy of it still resides in the original catalog location) and replaces any flight plan which currently exists in ‘flight plan 00’.

Activating the new flight plan:

1) Press the **MENU** Key to display the Flight Plan Catalog Page Menu.

2) Turn the small **right** knob to select ‘Activate Flight Plan?’ (Figure 1-33) and press the **ENT** Key

![Figure 1-33 Flight Plan Catalog Page Menu](image)
SECTION 2: NAV PAGES

2.1 MAIN PAGE GROUPS

The GPS 400's main pages are divided into four separate page groups: NAV, WPT, AUX, and NRST (Table 2-1). Each page group is comprised of multiple pages. The page groups are selected using the large right knob. The individual pages are selected using the small right knob.

<table>
<thead>
<tr>
<th>Page Groups</th>
<th>NAV Group</th>
<th>WPT Group</th>
<th>AUX Group</th>
<th>NRST Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAV Group</td>
<td>7 NAV Pages</td>
<td>see Section 6</td>
<td>see Section 8</td>
<td>see Section 7</td>
</tr>
<tr>
<td>WPT Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUX Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRST Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-1 Page Groups

The bottom right corner of the screen (Figure 2-1) indicates which page group is currently being displayed (e.g., NAV, WPT, AUX, or NRST), the number of pages available within that group (indicated by the square icons) and the placement of the current page within that group (indicated by a highlighted square icon).

The bottom right corner of the screen is also used to display the GPS 400's turn advisories ('Turn to 230°') and waypoint alerts ('Next DTK 230°') during flight plan and approach operations. See Section 5 for more information.

Selecting the desired page group (from any page):

Press and hold the CLR Key to select the Default NAV Page. Turn the large right knob to select the desired page group (Table 2-1 and Figure 2-1).

Selecting the desired page within the group:

Turn the small right knob to select the desired page (Figures 2-1 and 2-2).
2.2 NAV PAGE GROUP

The NAV Page Group includes seven pages (Figure 3-2). While viewing any NAV page, turn the small right knob to select a different NAV page. The pilot may find this selection process convenient to cycle between the Default NAV Page and the Map Page, two of the most frequently used pages. Other pages are provided for terrain information, (if configured for TERRAIN) to list frequencies for the flight plan, to show the current position, to display current satellite reception, and to make vertical navigation settings.

NOTE: The NAV Page Group may have eight or nine NAV pages available when the GPS 400 installation includes connection to traffic and/or weather information sources. See Section 10 of this manual for more information.

2.3 DEFAULT NAV PAGE

The first NAV page is the Default NAV Page (Figure 2-3). This page may be quickly selected from any page by pressing and holding the CLR Key.

The Default NAV Page displays a graphic course deviation indicator (CDI) across the top of the page. Unlike the angular limits used on a mechanical CDI coupled to a VOR or ILS receiver, full scale limits for this CDI are defined by a GPS-derived distance (0.3, 1.0, or 5.0 nm), as indicated at both ends of the CDI. By default, the CDI scale automatically adjusts to the desired limits based upon the current phase of flight: enroute, terminal area, or approach. The pilot may also manually select the desired scale setting as outlined in Section 8.4.

The graphic CDI shows the aircraft’s position at the center of the indicator, relative to the desired course (the moving course deviation needle). As with a traditional mechanical CDI, when off course simply steer toward the needle. The TO/FROM arrow in the center of the scale indicates whether the aircraft is heading TO (up arrow) the waypoint or FROM the waypoint (down arrow).
NOTE: The GPS 400 always navigates TO a waypoint unless the OBS switch is set (preventing automatic waypoint sequencing), or the aircraft has passed the last waypoint in the flight plan.

Directly below the CDI appears the active leg of the flight plan, or the direct-to destination when using the Direct-to Key. This automatically sequences to the next leg of the flight plan as the aircraft reaches each interim waypoint. If no flight plan or direct-to destination has been selected, the destination field remains blank.

The symbols in Table 2-2 are used on the Default NAV Page (directly below the CDI), to depict the ‘active leg’ of a flight plan or direct to:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>↘️</td>
<td>Direct-to a Waypoint</td>
</tr>
<tr>
<td>↑️</td>
<td>Course to a Waypoint, or Desired Course between Two Waypoints</td>
</tr>
<tr>
<td>⚤️</td>
<td>Procedure Turn</td>
</tr>
<tr>
<td>⚤️</td>
<td>Procedure Turn</td>
</tr>
<tr>
<td>⧔️</td>
<td>Vectors-to-Final</td>
</tr>
<tr>
<td>⭕️</td>
<td>DME Arc to the Left</td>
</tr>
<tr>
<td>⭕️</td>
<td>DME Arc to the Right</td>
</tr>
<tr>
<td>⭕️</td>
<td>Left-hand Holding Pattern</td>
</tr>
<tr>
<td>⭕️</td>
<td>Right-hand Holding Pattern</td>
</tr>
</tbody>
</table>

Table 2-2 NAV Page Symbols

Selecting Desired On-Screen Data

At the bottom of the Default NAV Page there are six user-definable fields which display the data needed as the flight progresses (Figure 2-3). By default these fields display: distance to destination (DIS), desired track (DTK), bearing to destination (BRG), ground speed (GS), ground track (TRK) and estimated time enroute (ETE). However, each of these fields can be customized to display a different data item. Available data items include:

- Bearing to destination (BRG)
- Course to steer (CTS)
- Cross track error (XTK)
- Desired track (DTK)
- Distance to destination (DIS)
- Enroute safe altitude (ESA)
- Estimated time of arrival (ETA)
- Estimate time enroute (ETE)
- Fuel flow (FLOW) (when configured)
- Ground speed (GS)
- Ground track (TRK)
- Minimum safe altitude (MSA)
- Track angle error (TKE)
- Vertical speed required (VSR)

If no flight plan or direct-to destination has been selected, only speed, track, altitude, and minimum safe altitude data may be displayed. All other data types appear as blank lines on the Default NAV Page until a destination is selected.
Selecting a different data item for any data field:

1) Starting with the Default NAV Page, press the **MENU** Key to display the Default NAV Page Menu (Figure 2-4).

![Figure 2-4 Default NAV Page Menu](image)

2) The ‘Change Fields?’ option is already highlighted, so press the **ENT** Key to select this option.

3) Use the large **right** knob to highlight the data field to be changed (Figure 2-5).

![Figure 2-5 ‘DIS’ Field Highlighted](image)

4) Turn the small **right** knob to display the list of available data items (Figure 2-6). Continue turning the small **right** knob to select the desired data item from the list.

![Figure 2-6 Select Field Type Window](image)

5) Press the **ENT** Key to select the desired data item and return to the Default NAV Page.

6) Press the small **right** knob momentarily to remove the cursor from the page.
Restoring Factory Settings

All data field settings can be quickly returned to their original factory settings.

Restoring all six data fields to factory default settings:

1) From the Default NAV Page, press the **MENU** Key to display the Default NAV Page Menu.

2) Turn the large **right** knob to highlight the ‘Restore Defaults?’ option (Figure 2-7) and press the **ENT** Key.

Dual Unit Considerations

A ‘Crossfill?’ option is also provided for the Default NAV Page. This option transfers a direct-to destination or flight plan to a second Garmin 400/500-series unit. See Section 8.2, Flight Planning: Crossfill for additional details on using the crossfill option.

2.4 MAP PAGE

The second NAV page is the Map Page (Figure 2-8), which displays the present position using an airplane symbol, along with nearby airports, NAVAIDs, user-defined waypoints, airspace boundaries, lakes, rivers, highways, and cities.

NOTE: If the GPS 400 is unable to determine a GPS position, the present position (airplane) symbol does not appear on the Map Page.

Different symbols are used to distinguish between waypoint types. The identifiers for any on-screen waypoints can also be displayed. (The identifiers are enabled by default.) Special-use and controlled airspace boundaries appear on the map, showing the individual sectors for Class B, Class C, and Class D airspaces.
The symbols in Table 2-3 are used to depict the various airports and NAVAIDs on the Map Page:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Airport with hard surface runway(s); (primary runway shown)</td>
</tr>
<tr>
<td></td>
<td>Airport with soft surface runway(s) only</td>
</tr>
<tr>
<td></td>
<td>Private Airfield</td>
</tr>
<tr>
<td></td>
<td>Heliport</td>
</tr>
<tr>
<td></td>
<td>VOR</td>
</tr>
<tr>
<td></td>
<td>VOR/DME</td>
</tr>
<tr>
<td></td>
<td>DME</td>
</tr>
<tr>
<td></td>
<td>Localizer</td>
</tr>
<tr>
<td></td>
<td>Intersection</td>
</tr>
<tr>
<td></td>
<td>VORTAC</td>
</tr>
<tr>
<td></td>
<td>TACAN</td>
</tr>
<tr>
<td></td>
<td>NDB</td>
</tr>
<tr>
<td></td>
<td>Locator Outer Marker</td>
</tr>
</tbody>
</table>

Table 2-3 Map Page Symbols

The Map Display can be set to 23 different range settings from 500 feet to 2000 nautical miles (statute and metric units are also available). The range is indicated in the lower left-hand corner of the Map Display (Figure 2-8), and represents the top-to-bottom distance covered by the Map Display.

Selecting a map range:

1) Press the up arrow of the RNG Key to zoom out to a larger map area.
2) Press the down arrow of the RNG Key to zoom in to a smaller map area and more detail.

An autozoom feature is available which automatically adjusts from an enroute range of 2000 nm through each lower range, stopping at a range of 1.0 nm as the aircraft approaches the destination waypoint. The autozoom feature is turned on/off from the Map Setup Page (described in Section 2.4).

The Map Page also displays a background map (or basemap) showing lakes, rivers, coastlines, highways, railways, and towns. When a map range is selected below the lower limit at which the map detail was originally created, an ‘overzoom’ indication appears on the Map Display, below the range reading (Figure 2-9).

The basemap has limited accuracy, and should not be used for navigation, but only for non-navigational situational awareness. Any basemap indication should be compared against other navigational sources for accuracy. Continuing to zoom in to lower range settings will cause ‘overzoom’ to be replaced with ‘no map’ and the geographic detail will be removed from the Map Display (airport and NAVAID detail remains).
The ‘Setup Map?’ option (described in Section 2.4) allows the pilot to define the maximum range at which each map feature appears. This provides the pilot with complete control to minimize screen clutter. The pilot can also quickly remove items from the map using the CLR Key.

Quickly decluttering the Map Display:
Press the CLR Key momentarily (as often as needed) to select the desired amount of map detail.

The CLR Key allows the pilot to quickly declutter the Map Display, providing four levels of map detail. Note the ‘-2’ (‘-1’ and ‘-3’ are also provided) suffix designation in Figure 2-10, indicating each successive declutter level.

Map Panning
Another Map Page function is panning, which allows the pilot to move the map beyond its current limits without adjusting the map range. When the panning function is selected (by pressing the small right knob), a target pointer flashes on the Map Display (Figure 2-11). A window also appears at the top of the Map Display showing the latitude/longitude position of the pointer, plus the bearing and distance to the pointer from the present position.

Selecting and using the panning function to pan the Map Display:
1) Press the small right knob to activate the panning target pointer.
2) Turn the small right knob to move up (turn clockwise) or down (counterclockwise).
3) Turn the large right knob to move right (turn clockwise) or left (counterclockwise).
4) To cancel the panning function and return to the present position, press the small right knob.
When the target pointer is placed on an object, the name of that object is highlighted (even if the name wasn't originally displayed on the map). This feature applies to airports, NAVAIDs, user-created waypoints, roads, lakes, rivers, almost everything displayed on the map except route lines.

When an airport, NAVAID, or user waypoint is selected on the Map Page, information about the waypoint can be reviewed or the waypoint can be designated as the direct-to destination.

Reviewing information for an on-screen airport, NAVAID, or user waypoint:

1) Use the panning function (as described in the preceding procedure) to place the target pointer on a waypoint (Figure 2-11).

2) Press the **ENT** Key to display the Waypoint Information Page(s) for the selected waypoint (Figure 2-12).

3) Press the **CLR** Key to exit the information page(s).

Map Direct-to

Designating an on-screen airport, NAVAID, or user waypoint as the direct-to destination:

1) Use the panning function (‘Map Panning’ in this section) to place the target pointer on a waypoint.

2) Press the **Direct-to** Key to display the select Direct-to Waypoint Page, with the selected waypoint already listed (Figure 2-13).

3) Press the **ENT** Key twice to confirm the selection and begin navigating to the waypoint.

The direct-to function can be used anywhere on the map. If nothing currently exists at the target position, a new waypoint called ‘+MAP’ (Figure 2-13) is created at the target pointer location before the direct-to is initiated.
Airspace Information on the Map

When a special-use or controlled airspace boundary appears on the Map Display, the pilot can quickly retrieve information (such as floor/ceiling limits and controlling agency) directly from the map.

Viewing airspace information for an on-screen special-use or controlled airspace:

1) Use the panning function (‘Map Panning’ in this section) to place the target pointer on an open area within the boundaries of an airspace. If the area is congested and it is difficult to select an open area, the pilot may need to zoom in or press the CLR Key to make the selection easier (Figure 2-14).

2) Press the ENT Key to display an options menu (Figure 2-15).

3) ‘Review Airspace?’ should already be highlighted. If not, select it with the small right knob. Press the ENT Key to display the Airspace Information Page for the selected airspace.

4) To display the COM frequency(ies) for the controlling agency, turn the large right knob to highlight ‘Frequencies?’ and press the ENT Key. Press the CLR Key to return to the Airspace Information Page.

5) Press the CLR Key to exit the Airspace Information Page.
Map Setup

Many of the GPS 400’s functions are menu driven. Each of the main pages has an options menu, allowing customization of the page to the pilot’s preferences and/or selection of special features which specifically relate to that page. A Map Page Menu (Figure 2-16) provides additional settings to customize the Map Page and additional features related specifically to the Map Page.

Displaying the Map Page Menu:

Press the MENU Key with the Map Page displayed (Figure 2-16).

The following options are available: ‘Setup Map?’, ‘Measure Dist?’, ‘Data Fields Off?’, ‘Change Fields?’, and ‘Restore Defaults?’.

‘Setup Map?’ allows configuration of the Map Display to individual preferences, including map orientation, land data enable/disable, Jeppesen data enable/disable, automatic zoom, airspace boundaries, and text size.

Table 2-4 lists the settings available for each group:

<table>
<thead>
<tr>
<th>Group</th>
<th>Available Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>Orientation, AutoZoom, Land Data, Aviation Data</td>
</tr>
<tr>
<td>Weather</td>
<td>Lightning Mode/Symbol (when applicable)</td>
</tr>
<tr>
<td>Traffic</td>
<td>Traffic Mode/Symbol/Label (when applicable)</td>
</tr>
<tr>
<td>Airport</td>
<td>Large/Medium/Small Airports and Text</td>
</tr>
<tr>
<td>NAVAID</td>
<td>VORs, NDBs, Intersections, and Text</td>
</tr>
<tr>
<td>Waypoint</td>
<td>User Waypoints, Waypoint Text, Flight Plan Wpts</td>
</tr>
<tr>
<td>Line</td>
<td>Active Flight Plan, Lat/Long</td>
</tr>
<tr>
<td>Control</td>
<td>Controlled Airspace: Class B, C, D (tower zone)</td>
</tr>
<tr>
<td>Airspace</td>
<td>Special-Use Airspace: Restricted, MOA, Other</td>
</tr>
<tr>
<td>City</td>
<td>Large/Medium/Small Cities and Text</td>
</tr>
<tr>
<td>Road</td>
<td>Freeway, National Highway, Local Hwy, Local Road</td>
</tr>
<tr>
<td>Other</td>
<td>States/Prov, Rivers/Lakes, Railroads, Wind Vector</td>
</tr>
</tbody>
</table>

Table 2-4

For most entries in Table 2-4, on, off, and range are the available selections for display of each information type.

NOTE: Large, medium, and small classifications are used on the GPS 400 for airports and cities. Large airports are those with a runway longer than 8100 feet. Medium airports include those with a runway longer than 5000 feet or with a control tower. Large cities are those with approximate populations greater than 200,000 and medium cities with greater than 50,000.
Changing map orientation:
1) From the Map Page Menu, turn the large right knob to highlight ‘Setup Map?’ (Figure 2-16) and press the ENT Key.
2) Turn the small right knob to select ‘Map’ (Figure 2-17) and press the ENT Key.
3) Turn the large right knob to highlight the ‘Orientation’ field.
4) Turn the small right knob to select the desired option.
 a) Select ‘DTK up’ to fix the top of the Map Display to the desired course.
 b) Select ‘North up’ to fix the top of the Map Display to a north heading.
 c) Select ‘Track up’ (Figure 2-18) to adjust the top of the Map Display to the current track heading.
5) Press the ENT Key to accept the selected option (Figure 2-19).
Automatic Zoom

The automatic zoom feature automatically adjusts the map range from 2000 nm through each lower range, stopping at 1.0 nm when approaching the destination waypoint.

Enabling/disabling automatic zoom:
1) From the Map Page Menu, turn the large right knob to highlight ‘Setup Map?’ and press the **ENT** Key.
2) Turn the small right knob to select ‘Map’ and press the **ENT** Key.
3) Turn the large right knob to highlight the ‘Auto Zoom’ field.
4) Turn the small right knob to select ‘On’ or ‘Off’.
5) Press the **ENT** Key to accept the selected option.

To enable/disable the wind vector, all background land data, or all Jeppesen aviation data:
1) From the Map Page Menu, turn the large right knob to highlight ‘Setup Map?’ and press the **ENT** Key.
2) Turn the small right knob to select ‘Map’ and press the **ENT** Key.
3) Turn the large right knob to highlight the appropriate field.
4) Turn the small right knob to select ‘On’ or ‘Off’.
5) Press the **ENT** Key to accept the selected option.

Displaying airports, NAVAIDs, active flight plan waypoints, user-created waypoints, state/provincial boundaries, rivers/lakes, and cities:
1) From the Map Page Menu, turn the large right knob to highlight ‘Setup Map?’ and press the **ENT** Key.
2) Turn the small right knob to select the appropriate ‘Group’ name (per Table 2-2) and press the **ENT** Key.
3) Turn the large right knob to highlight the zoom field for the desired feature.
4) Turn the small right knob to select the maximum range at which the feature should appear on screen (or select ‘Off’ to never display the selected feature).
5) Press the **ENT** Key to accept the selected option.
6) Turn the large right knob to highlight the text field for the desired feature.
7) Turn the small right knob to select the desired text size, or select ‘None’ to disable text descriptions.
8) Press the **ENT** Key to accept the selected option.
Displaying airspace boundaries, highways, roads, railroad lines, track log data, active flight plan course lines, and lat/long grid lines:

1) From the Map Page Menu, turn the large right knob to highlight ‘Setup Map?’ and press the ENT Key.
2) Turn the small right knob to select the appropriate group name (per Table 2-2) and press the ENT Key.
3) Turn the large right knob to highlight the zoom field for the desired feature.
4) Turn the small right knob to select the maximum range at which the feature should appear on screen (or select ‘Off’ to never display the selected feature).
5) Press the ENT Key to accept the selected option.

Distance Measurements

The ‘Measure Dist?’ option provides a quick, easy method for determining the bearing and distance between any two points on the Map Display.

Measuring bearing and distance between two points:

1) Turn the large right knob to highlight ‘Measure Dist?’ (Figure 2-20).
2) Press the ENT Key, an on-screen reference pointer appears on the Map Display at the present position.

3) Turn the small and large right knobs to place the reference pointer at the desired location to measure FROM and press the ENT Key (Figure 2-21).

4) Again, use the small and large right knobs to place the reference pointer at the desired location to measure TO. The bearing and distance from the first reference location appears at the top of the Map Display.

5) To exit the ‘Measure Dist?’ option, press the small right knob.

Selecting Full Screen Map

The ‘Data Fields Off?’ option provides a full-screen Map Display (Figure 2-22), without the four data fields along the right-hand side of the screen. Select this option when to display a larger map area. If this option has been selected and the data fields are off, ‘Data Fields On?’ appears as an option instead.
Turning the data fields off/on:

Turn the large right knob to highlight ‘Data Fields Off?’ (or ‘Data Fields On?’) and press the ENT Key.

Selecting Desired On-Screen Data

‘Change Fields?’ allows the pilot to choose the data displayed on the four user-selectable data fields along the right-hand side of the Map Page. There are 14 available data types, including bearing to destination, distance to destination, estimated time of arrival, ground speed, minimum safe altitude, and track. See Section 12.3 for descriptions of these (and other) navigation terms.

Changing a data field:

1) From the Map Page Menu, turn the large right knob to highlight ‘Change Fields?’ (Figure 2-23) and press the ENT Key.

2) Turn the large right knob to highlight the data field to be changed.

3) Turn the small right knob to select the desired type of data (Figure 2-24) to appear on this field and press the ENT Key.

4) Press the small right knob to remove the cursor.

NOTE: The on-screen traffic information occupies two data fields, leaving room to display only two additional data types. Traffic information is only available when the GPS 400 installation includes connection to traffic information sources. See Section 10, Additional Features.

Restoring Factory Settings

‘Restore Defaults?’ resets all four user-selectable data fields to their original factory default settings.

Restoring the factory default settings:

From the Map Page Menu, turn the large right knob to highlight ‘Restore Defaults?’ (Figure 2-25) and press the ENT Key.
2.5 TERRAIN PAGE

NOTE: The TERRAIN Page does not appear on GPS 400 units that are not properly equipped with or configured for TERRAIN. See Section 9 for a full description of TERRAIN functions.

TERRAIN Page

To display the TERRAIN Page, select the NAV Page Group and turn the small **right** knob until the TERRAIN Page is displayed (Figure 2-26 and 2-27). The TERRAIN Page displays:

- GPS-derived MSL altitude shown in increments of 20 feet or 10 meters, depending on unit configuration. The ‘G’ to right of the MSL altitude display reminds the pilot that altitude is GPS-derived.
- Aircraft ground track
- Terrain Range - Indicates the terrain elevation in colors relative to the aircraft altitude
- Range marking rings - (1 nm, 2 nm, 5 nm, 10 nm, 25 nm, 50 nm, and 100 nm)
- Heading Indicator - The heading indication on the TERRAIN Page always displays ‘TRK’ for Track-up, unless there is no valid heading
- Obstacles
- Potential Impact Points

Selectable Display Settings

The TERRAIN Page has two selectable view settings:

- **360˚ View** - View from above aircraft depicting surrounding terrain on all sides
- **120˚ View** - View of terrain ahead of and 60˚ to either side of the aircraft flight path (Figure 3-27)

NOTE: The TERRAIN Page gives a ‘Track Up’ display orientation, as indicated by the ‘TRK’ label shown on the display. This is the only orientation available on this page.
Displaying a 360° view:
1) Select the TERRAIN Page and press the \textbf{MENU} Key.
2) Select ‘View 360°?’ (Figure 2-28).
3) Press the \textbf{ENT} Key. To switch back to a 120° view, repeat step 1, select ‘View 120°?’, and press the \textbf{ENT} Key.

Seven display ranges are available, allowing for a more complete view of the surrounding area.

Changing the display range:
Select the TERRAIN Page and press up or down on the \textbf{RNG} Key to select the desired range: 1 nm, 2 nm, 5 nm, 10 nm, 25 nm, 50 nm, 100 nm (Figure 2-29).

Aviation information such as airports, VORs, and other NAVAIDs can be turned on or off from the TERRAIN Page.

Showing or hiding aviation data:
1) Select the TERRAIN Page and press the \textbf{MENU} Key.
2) Select ‘Show (or Hide) Aviation Data’ (Figure 2-30) and press the \textbf{ENT} Key. Pressing the \textbf{CLR} Key when the TERRAIN Page is displayed can also be used to toggle aviation information on or off.
Inhibit Mode

TERRAIN has an inhibit mode that deactivates the FLTA/PDA visual alerts. Pilots should use discretion when inhibiting TERRAIN and always remember to enable the system when appropriate. See Section 9.3 for more information on TERRAIN alerts.

Inhibit TERRAIN:

1) Select the TERRAIN Page and press the MENU Key. ‘Inhibit Terrain?’ is selected by default (Figure 2-31).

2) Press the ENT Key. The ‘TER INHB’ annunciation is displayed in the TERRAIN annunciator field when TERRAIN is inhibited (Figure 2-32).

Enabling TERRAIN:

1) Select the TERRAIN Page and press the MENU Key. ‘Enable Terrain?’ is selected by default.

2) Press the ENT Key. The TERRAIN system is functional again.

TERRAIN Symbols

NOTE: See Section 9.2 for a complete description of TERRAIN symbology.

The following symbols (Figure 2-33) are used to represent obstacles and potential impact points on the TERRAIN Page.

- Red Symbol - Terrain/Obstacle is above or within 100 feet below the aircraft altitude
- Yellow Symbol - Terrain/Obstacle is between 1000 feet and 100 feet below the aircraft altitude
- Black Symbol - Terrain/Obstacle is more than 1000 feet below the aircraft altitude

NOTE: Obstacle symbols are shown on display zoom ranges up to 10 nm.

Unlighted Obstacles <1000 feet AGL
Lighted Obstacles <1000 feet AGL
Unlighted Obstacles >1000 feet AGL
Lighted Obstacles >1000 feet AGL
Potential Impact Points

NOTE: If an obstacle and the projected flight path of the aircraft intersect, the display automatically zooms in to the closest potential point of impact on the TERRAIN Page.
2.6 NAV/COM PAGE

The NAV/COM (navigation communications) Page (Figure 2-34) provides a list of the airport communication and navigation frequencies at the departure, enroute, and arrival airports. The NAV/COM Page makes selection of the frequencies needed along the flight plan quick and convenient. If there is no active flight plan with a departure airport, the NAV/COM Page displays the frequencies for the airport nearest the departure position.

Selecting a frequency list for a departure, enroute, or arrival airport:

1) Press the small right knob to activate the cursor.
2) Turn the large right knob to place the cursor on the airport identifier field (top line on the NAV/COM Page, see Figure 2-34).
3) Turn the small right knob to select the desired airport (Figure 2-35) and press the ENT Key.
Scrolling through the list of frequencies:

1) Activate the cursor, if not already active, by pressing the small right knob.

2) Turn the large right knob to move the cursor through the list of frequencies. If there are more frequencies in the list than can be displayed on the screen, a scroll bar along the right-hand side of the screen (Figure 2-36) indicates which part of the list is currently being displayed.

If a listed frequency has sector or altitude restrictions, the frequency is preceded by an ‘Info?’ designation.

Viewing usage restrictions for a frequency:

1) Turn the large right knob to place the cursor on the ‘Info?’ designation directly in front of the desired frequency (Figure 2-37).

2) Press the ENT Key to display the restriction information (Figure 2-38).

3) To return to the NAV/COM Page, press the ENT Key.

NAV/COM frequencies are shown for reference only.

Some listed frequencies may include designations for limited usage, as follows:

- ‘TX’ - transmit only
- ‘RX’ - receive only
- ‘PT’ - part time frequency
2.7 POSITION PAGE

The Position Page displays the present position (by default, in latitude and longitude) and altitude. The Position Page (Figure 2-39) also displays the current track, ground speed, time, and a reference waypoint field. These fields are user-selectable to configure the page to the pilot’s own preferences and current navigation needs.

NOTE: Do not rely solely on MSA as an absolute measure of safe altitude. Consult current area charts and NOTAMs.

Changing the user-selectable data fields:
1) Press the MENU Key to display the Position Page Menu (Figure 2-40).

![Figure 2-40 Position Page Menu]

2) Turn the large right knob to highlight ‘Change Fields?’ and press the ENT Key.

3) Turn the large right knob to highlight the data field to be changed.

4) Turn the small right knob to display the list of available data items (Figure 2-41). Continue turning the small right knob to select the desired data item from the list.

![Figure 2-41 Select Field Type Window]

The graphic track indicator at the top of the page indicates the direction the aircraft is heading, or track, only while moving. The graphic track indicator and the TRK indication directly below it provide the same information. Use the graphic track indicator for quick at-a-glance ground track information. Directly below are three user-selectable fields, which by default display track, ground speed, and altitude. Barometric pressure (BARO) settings and minimum safe altitude (MSA) can also be displayed in these fields. MSA is the recommended minimum altitude within approximately ten miles of the present position. MSA is calculated from the information contained in the database and generally takes into account mountains, buildings, and other permanent features.
5) Press the **ENT** Key to select the desired data item and return to the Position Page.

6) Press the small **right** knob momentarily to remove the cursor from the page.

The Position Page also features a reference waypoint field, located at the bottom of the page, to indicate the bearing and distance to/from a selected waypoint. The reference waypoint field can display bearing and distance information for a nearby airport (default), VOR, NDB, intersection, or user waypoint.

Changing the reference waypoint information:

1) Press the **MENU** Key to display the Position Page Menu (Figure 2-39).

2) Turn the large **right** knob to highlight ‘Change Fields?’ and press the **ENT** Key.

3) Turn the large **right** knob to highlight the waypoint type field (bottom left corner of the page; default setting shows ‘APT’ see Figure 2-42).

4) Turn the small **right** knob to display the list of available waypoint types (Figure 2-43). Continue turning the small **right** knob to select the desired data item from the list.

5) If ‘WPT’ is selected as the waypoint type, the pilot can designate any airport, NAVAID, or user waypoint as a reference waypoint. Press the small **right** knob, turn the large **right** knob to highlight the waypoint identifier field (Figure 2-44), then use the small and large **right** knobs to enter the identifier of the desired waypoint. Press the **ENT** Key to confirm the selected waypoints. Press the small **right** knob to remove the cursor.

![Figure 2-42 Waypoint Type Field Highlighted](image1)

![Figure 2-43 Category Window](image2)

![Figure 2-44 Reference Waypoint Field Highlighted](image3)
6) Press the ENT Key to select the desired type and return to the Position Page.

7) To select between ‘bearing FROM’ or ‘bearing TO’ to the reference waypoint, turn the small right knob to select the desired bearing reference (Figure 2-45) and press the ENT Key.

8) Press the small right knob momentarily to remove the cursor from the page.

Restoring Factory Settings

A ‘Restore Defaults?’ option allows the pilot to reset all data fields to their original factory default settings. This returns the three user-selectable fields at the top of the page and the reference waypoint fields to default settings.

Restoring the factory default settings:

1) Press the MENU Key to display the Position Page Menu (Figure 2-46).

2) Turn the large right knob to highlight ‘Restore Defaults?’ and press the ENT Key.
2.8 SATELLITE STATUS PAGE

The Satellite Status Page provides a visual reference of GPS receiver functions, including current satellite coverage, GPS receiver status, and position accuracy. The Satellite Status Page (Figure 2-47) is helpful in troubleshooting weak (or missing) signal levels due to poor satellite coverage or installation problems.

Figure 2-47 Satellite Status Page

1. Sky View
2. Estimated Position Error (EPE) and Dilution of Precision (DOP)
3. GPS Receiver Status
4. Horizontal Uncertainty Level (HUL)
5. Satellite ID Numbers
6. Signal Strength Bars
7. Excluded Satellite
8. Current Page Group
9. Number of Pages in Current Page Group

As the GPS receiver locks onto satellites, a signal strength bar appears for each satellite in view, with the appropriate satellite number (01-32) underneath each bar. The status of satellite reception is shown as follows:

- No signal strength bars - The receiver is looking for the satellites indicated.
- Hollow signal strength bars - The receiver has found the satellite(s) and is collecting data (Figure 2-48).
- Solid signal strength bars - The receiver has collected the necessary data and the satellite(s) is ready for use.
- Checkered signal strength bars - Excluded satellites (Figure 2-47).

The sky view display (at top left corner of the page) shows which satellites are currently in view and where they are. The outer circle of the sky view represents the horizon (with north at top of the page), the inner circle 45° above the horizon, and the center point directly overhead.
Each satellite has a 30-second data transmission that must be collected (hollow signal strength bar, see Figure 2-48) before the satellite may be used for navigation (solid signal strength bar, see Figure 2-47). Once the GPS receiver has determined the current position, the GPS 400 indicates position, track, and ground speed on the other navigation pages. The GPS receiver status field (Figure 2-46) also displays the messages listed in Table 2-5 under the appropriate conditions.

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching Sky</td>
<td>The GPS receiver is searching the sky for ANY visible satellites. The pilot is informed of this status with a ‘Searching the Sky’ message.</td>
</tr>
<tr>
<td>Acquiring Sat</td>
<td>The GPS receiver is acquiring satellites for navigation. In this mode, the receiver uses satellite orbital data (collected continuously from the satellites) and last known position to determine which satellites should be in view.</td>
</tr>
<tr>
<td>2D Navigation</td>
<td>The GPS receiver is in 2D navigation mode. Altitude data is provided by an altitude serializer.</td>
</tr>
<tr>
<td>3D Navigation</td>
<td>The GPS receiver is in 3D navigation mode and computes altitude using satellite data.</td>
</tr>
<tr>
<td>Poor Coverg</td>
<td>The GPS receiver cannot acquire sufficient satellites for navigation.</td>
</tr>
<tr>
<td>Rcvr Not Usbl</td>
<td>The GPS receiver is unusable due to incorrect initialization or abnormal satellite conditions. Turn the unit off and on again.</td>
</tr>
<tr>
<td>AutoLocate</td>
<td>The GPS receiver is looking for any available satellite. This process can take up to five minutes to determine a position.</td>
</tr>
</tbody>
</table>

The Satellite Status Page also indicates the accuracy of the position fix, using Estimated Position Error (EPE), Dilution of Precision (DOP), and Horizontal Uncertainty Level (HUL) figures. DOP measures satellite geometry quality (i.e., number of satellites received and where they are relative to each other) on a scale from one to ten. The lowest numbers are the best accuracy and the highest numbers are the worst. EPE uses DOP and other factors to calculate a horizontal position error, in feet or meters. HUL is explained in Section 11.
2.9 VERTICAL NAVIGATION PAGE

The GPS 400’s Vertical Navigation Page (the last NAV page, see Figure 2-49) allows the pilot to create a three-dimensional profile which guides the pilot from the present position and altitude to a final (target) altitude at a specified location. This is helpful when the pilot would like to descend to a certain altitude near an airport or climbing to an altitude before reaching a route or direct-to waypoint (Figure 2-50). Once the profile is defined, message alerts and additional data on the Default NAV Page and the Map Page provide guidance to the pilot.

![Figure 2-49 VNAV (Vertical Navigation) Page](image)

1. Target Altitude
2. Target Distance
3. Altitude Reference (AGL or MSL)
4. Target Reference
5. Vertical Speed Desired
6. Vertical Speed Required
7. Current Page Group
8. Number of Pages in Current Page Group

NOTE: To use the vertical navigation features, ground speed must be greater than 35 knots and the pilot must be navigating to a direct-to destination or using a flight plan.

![Figure 2-50 Vertical Navigation Profile](image)

Creating a vertical navigation profile (Figure 2-50):

1) Press the small right knob to activate the cursor.
2) Turn the large right knob to highlight the target altitude field.
3) Turn the small and large right knobs to select the target altitude (Figure 2-51) and press the **ENT** Key.

![Figure 2-51 Target Altitude Field Selected](image)
4) Turn the small **right** knob to select ‘Above Wpt’ (AGL) or ‘MSL’, (Figure 2-52) and press the **ENT** Key. ‘Above Wpt’ uses the altitude of a destination airport as stored in the Jeppesen NavData Card. ‘MSL’ lets the pilot set a specific target altitude for any waypoint category: airport, VOR, NDB, intersection, or user waypoint.

5) Turn the small and large **right** knobs to select a distance from the target reference waypoint (Figure 2-53) and press the **ENT** Key. If the target altitude should occur at the target reference waypoint, enter a distance of zero.

6) Turn the small **right** knob to select ‘Before’ or ‘After’, and press the **ENT** Key. This setting designates whether the offset distance defines a point before the aircraft reaches the target reference waypoint or after the aircraft reaches the waypoint.

7) When using a flight plan, the target reference waypoint itself can be specified from the waypoints contained in the flight plan. By default, the last waypoint in the flight plan is selected. To select a different waypoint, turn the small **right** knob to select the desired waypoint and press the **ENT** Key.

8) The default profile utilizes a 400 fpm descent rate. To change the rate, turn the large **right** knob to highlight the ‘VS Profile’ field (Figure 2-54) and use the small and large **right** knobs to enter a new rate. Press the **ENT** Key when finished.
With the profile set, the vertical speed required (VSR) is displayed on the Vertical Navigation Page. Expect the following to occur when using the vertical navigation feature:

- At one minute prior to reaching the initial descent point, a message ‘Approaching VNAV Profile’ occurs. The descent (or climb) angle also locks to prevent changes in speed from altering the profile.

- If selected, the vertical speed required (VSR) readout on the Default NAV Page and the Map Page show the desired vertical speed to maintain the proper descent (or climb) angle.

- At 500 feet above (or below, for a climb) the target altitude, an ‘Approaching Target Altitude’ message is provided. The VSR readout on the Default NAV Page and the Map Page is blanked out, at this point.

Vertical navigation messages can be turned on or off; they are off by default. Turning the messages off allows the pilot to keep the previous profile settings, without having them generate messages when the feature is not needed.

Disabling/Enabling the vertical navigation (VNAV) messages:

1) Press the MENU Key to display the Vertical Navigation Page Menu (Figure 2-55).

 ![Figure 2-55 VNAV Page Menu](image)

2) With ‘VNAV Messages On?’ highlighted, press the ENT Key. Or, if the messages are already on, to turn them off, make sure ‘VNAV Messages Off?’ is highlighted and press the ENT Key.
SECTION 3: DIRECT-TO NAVIGATION

3.1 OVERVIEW

The GPS 400’s direct-to function provides a quick method of setting a course to a destination waypoint. Once a direct-to is activated, the GPS 400 establishes a point-to-point course line (great circle) from the present position to the selected direct-to destination. Navigation data on the various NAV pages provides steering guidance until the direct-to is cancelled or replaced by a new destination.

Selecting a direct-to destination:

1) Press the Direct-to Key. The Select Direct-to Waypoint Page appears (Figure 3-1), with the waypoint identifier field highlighted.

2) Use the small and large right knobs to enter the identifier of the desired destination waypoint (Figure 3-2).

3) Press the ENT Key to confirm the selected waypoint, and press the ENT Key again to activate the direct-to function (Figure 3-3).

When off course while navigating to a waypoint, the direct-to function may also be used to re-center the CDI (HSI) needle and proceed to the same waypoint.

Re-centering the CDI (HSI) needle to the same destination waypoint:

Press the Direct-to Key, followed by the ENT Key twice.

NOTE: When navigating an approach with the missed approach point (MAP) as the current destination, re-centering the CDI (HSI) needle with the Direct-to Key cancels the approach.
SECTION 3
DIRECT-TO NAVIGATION

Selecting a Destination by Facility Name or City

In addition to selecting a destination by identifier, the Select Direct-to Waypoint Page (Figure 3-4) also allows the pilot to select airports, VORs, and NDBs by facility name or city location. If duplicate entries exist for the entered facility name or city, additional entries may be viewed by continuing to turn the small right knob during the selection process. See Section 6.1, Duplicate Waypoints for more information.

1) Press the Direct-to Key. The Select Direct-to Waypoint Page appears, with the waypoint identifier field highlighted.

2) Turn the large right knob to highlight the facility name (second line) or the city (third line) field.

3) Use the small and large right knobs to enter the facility name or city location of the desired destination waypoint (Figure 3-5). When spelling the facility name or city, the GPS 400’s Spell’N’Find feature selects the first entry in the database based upon the characters entered up to that point.

4) Continue turning the small right knob to scroll through any additional database listings for the selected facility name or city. The pilot can also scroll backwards with the small right knob if the desired waypoint has been scrolled past.

5) Press the ENT Key to confirm the selected waypoint, and press the ENT Key again to activate the direct-to function.

Selecting a Destination from the Active Flight Plan

When navigating an active flight plan, any waypoint contained in the flight plan may be selected as a direct-to destination from the Select Direct-to Waypoint Page. See Section 4, for more information on flight plans.
Selecting a direct-to destination from the active flight plan:

1) Press the Direct-to Key. The Select Direct-to Waypoint Page appears, with the waypoint identifier field highlighted.

2) Turn the large right knob to highlight the flight plan (FPL) field (Figure 3-6).

3) Turn the small right knob to display a window showing all waypoints in the active flight plan (Figure 3-7).

4) Continue turning the small right knob to scroll through the list and highlight the desired waypoint.

5) Press the ENT Key to confirm the selected waypoint, and press the ENT Key again to activate the direct-to function.

Selecting the Nearest Airport as a Direct-to Destination

The Select Direct-to Waypoint Page always displays the nearest airports (from the present position) in the NRST field. Nearby airports may also be selected as direct-to destinations using the steps described in Section 7.1.

Selecting a nearby airport as a direct-to destination:

1) Press the Direct-to Key. The Select Direct-to Waypoint Page appears, with the waypoint identifier field highlighted.

2) Turn the large right knob to highlight the nearest airport (NRST) field.

3) Turn the small right knob to display a window showing up to nine nearby airports (Figure 3-8).

4) Continue turning the small right knob to scroll through the list and highlight the desired airport.

5) Press the ENT Key to confirm the selected airport, and press the ENT Key again to activate the direct-to function.
Shortcuts

Shortcuts are available when using the Direct-to Key, allowing the pilot to bypass the use of the small and large right knobs to enter the destination waypoint's identifier. A direct-to can be performed from any page displaying a single waypoint identifier (such as the WPT pages for airports and NAVAIDs), or from pages that display a list of waypoints (e.g., the Nearest Airport Page).

Selecting an on-screen waypoint as a direct-to destination:

1) If a single airport, NAVAID, or user waypoint is displayed on-screen (Figure 3-9):
 - a) Press the Direct-to Key.
 - b) Press the ENT Key twice.

![Figure 3-9 Single Waypoint Displayed](image)

2) If a list of waypoints is displayed on-screen:
 - a) Press the small right knob to activate the cursor.
 - b) Turn the large right knob to highlight the desired waypoint (Figure 3-10).

![Figure 3-10 Nearest List](image)

c) Press the Direct-to Key followed by the ENT Key twice.
Selecting a Direct-to destination from the Map Page

Direct-to destinations may also be selected from the Map Page. If no airport, NAVAID, or user waypoint exists at the desired location, a waypoint named ‘+MAP’ is automatically created at the location of the panning pointer.

Selecting a direct-to destination from the Map Page:
1) From the Map Page, press the small right knob to display a panning pointer.
2) Turn the small and large right knobs to place the panning pointer at the desired destination location.
3) If the panning pointer is placed on an existing airport, NAVAID, or user waypoint, the waypoint name is highlighted (Figure 3-11). Press the Direct-to Key and the ENT Key twice to navigate to the waypoint.

![Figure 3-11 Panning Pointer Placed on Waypoint](image)

4) If the panning pointer is placed on an open location, press the Direct-to Key and the ENT Key twice to create a ‘MAP’ waypoint and navigate to it.

Cancelling Direct-to Navigation

Once a direct-to is activated, the GPS 400 provides navigation guidance to the selected destination until the direct-to is replaced with a new direct-to or flight plan, cancelled, or the unit is turned off.

Cancelling a direct-to:
1) Press the Direct-to Key to display the Select Direct-to Waypoint Page.
2) Press the MENU Key to display the Direct-to Page Menu (Figure 3-12).

![Figure 3-12 Select Direct-to Page Menu](image)

3) With ‘Cancel Direct-to NAV?’ highlighted, press the ENT Key. If a flight plan is still active, the GPS 400 resumes navigating the flight plan along the closest leg.
SECTION 3
DIRECT-TO NAVIGATION

Specifying a Course to a Waypoint

When performing a direct-to, the GPS 400 sets a direct great circle course to the selected destination. The course to the destination can also be manually defined using the ‘CRS’ course field on the Select Direct-to Waypoint Page.

Manually defining the direct-to course:

1) Press the Direct-to Key.

2) Use the small and large right knobs to select the destination waypoint.

3) Press the ENT Key to confirm the selected waypoint, then turn the large right knob to highlight the course (‘CRS’) field (Figure 3-13).

Figure 3-13 CRS (Course) Field Highlighted

4) Turn the small and large right knobs to select the desired course (Figure 3-14) and press the ENT Key.

Figure 3-14 Course Field Selected

5) Press the ENT Key again to begin navigation using the selected destination and course.

6) To re-select a direct course from present position (or select a new manually-defined course), simply press the Direct-to Key, followed by the ENT Key twice.
SECTION 4: FLIGHT PLANS

The GPS 400 lets the pilot create up to 20 different flight plans, with up to 31 waypoints in each flight plan. The Flight Plan Page Group consists of two pages (Active Flight Plan Page, Figure 4-1, and Flight Plan Catalog Page, Figure 4-2), accessed by pressing the FPL Key. The flight plan pages allow the pilot to create, edit, and copy flight plans.

4.1 FLIGHT PLAN CATALOG PAGE

The Flight Plan Catalog Page (Figure 4-1) allows the pilot to create, edit, activate, delete, and copy flight plans. Flight plans numbered from 1 through 19 are used to save flight plans for future use. ‘Flight plan 00’ is reserved exclusively for the flight plan currently in use for navigation. Any time the pilot activates a flight plan, a copy of the flight plan is automatically transferred to ‘flight plan 00’, overwriting any previously active flight plan.

Creating a new flight plan:

1) Press the FPL Key and turn the small right knob to display the Flight Plan Catalog Page (Figure 4-2).
2) Press the MENU Key to display the Flight Plan Catalog Page Menu (Figure 4-3).
3) Turn the large right knob to highlight ‘Create New Flight Plan?’ and press the ENT Key.
4) A blank Flight Plan Page appears for the first empty storage location (Figure 4-4). Use the small and large right knobs to enter the identifier of the departure waypoint and press the ENT Key.

Figure 4-4 Flight Plan Page

5) Repeat step 4 to enter the identifier for each additional flight plan waypoint.

6) Once all waypoints have been entered, press the small right knob to return to the Flight Plan Catalog Page.

Flight Plan Editing

Adding a waypoint to an existing flight plan:

1) Press the FPL Key and turn the small right knob to display the Flight Plan Catalog Page.

2) Press the small right knob to activate the cursor.

3) Turn the large right knob to highlight the desired flight plan and press the ENT Key.

4) Turn the large right knob to select the point to add the new waypoint. If an existing waypoint is highlighted, the new waypoint is placed directly in front of this waypoint (Figure 4-5).

Figure 4-5 Flight Plan Page

5) Use the small and large right knobs to enter the identifier of the new waypoint and press the ENT Key (Figure 4-6).

Figure 4-6 Waypoint Identifier Field Selected

6) Once all changes have been made, press the small right knob to return to the Flight Plan Catalog Page (Figure 4-7).

Figure 4-7 Edited Flight Plan Page
Deleting a waypoint from an existing flight plan:
1) Press the FPL Key and turn the small right knob to display the Flight Plan Catalog Page.
2) Press the small right knob to activate the cursor.
3) Turn the large right knob to highlight the desired flight plan and press the ENT Key.
4) Turn the large right knob to select the waypoint to be deleted and press the CLR Key to display a ‘remove waypoint’ confirmation window.
5) With ‘Yes’ highlighted, press the ENT Key to remove the waypoint.
6) Once all changes have been made, press the small right knob to return to the Flight Plan Catalog Page.

A one-line user comment may be added to any flight plan, which is displayed on the Flight Plan Catalog Page, next to the flight plan’s number. By default, as the flight plan is being created, the comment shows the first and last waypoints in the flight plan.

Changing the comment line for an existing flight plan:
1) From the Flight Plan Catalog Page, press the small right knob to activate the cursor.
2) Turn the large right knob to highlight the desired flight plan and press the ENT Key.
3) Turn the large right knob to select the comment line at the top of the screen.
4) Use the small and large right knobs to enter the new comment (Figure 4-8). Press the ENT Key when finished.

5) Once all changes have been made, press the small right knob to return to the Flight Plan Catalog Page.
SECTION 4
FLIGHT PLANS

Activating Flight Plans

Once a flight plan is defined through the Flight Plan Catalog Page (using the steps outlined previously in this section), it may be activated for navigation. Activating the flight plan places it into ‘flight plan 00’ and overwrites any previous information at that location.

Activating an existing flight plan:
1) From the Flight Plan Catalog Page, press the small right knob to activate the cursor.
2) Turn the large right knob to highlight the desired flight plan and press the MENU Key to display the Flight Plan Catalog Page Menu.
3) Turn the large right knob to highlight ‘Activate Flight Plan?’ and press the ENT Key (Figure 4-9).

Inverting Flight Plans

After travelling along a flight plan, the pilot may wish to reverse the route for navigation guidance back to the original departure point.

Activating an existing flight plan in reverse order:
1) From the Flight Plan Catalog Page, press the small right knob to activate the cursor.
2) Turn the large right knob to highlight the desired flight plan and press the MENU Key to display the Flight Plan Catalog Page Menu.
3) Turn the large right knob to highlight ‘Invert & Activate FPL?’ (Figure 4-10) and press the ENT Key. The original flight plan remains intact in its flight plan catalog storage location.
Copying Flight Plans

To save a flight plan currently located in ‘flight plan 00’, be sure to copy it to an open catalog location (1-19) before the flight plan is cancelled, overwritten, or erased.

Copying a flight plan to another flight plan catalog location:

1) From the Active Flight Plan Page, press the
 MENU Key to display the Active Flight Plan
 Page Menu.
2) From the Flight Plan Catalog Page, press the
 small right knob to activate the cursor, turn the
 large right knob to highlight the flight plan to
 be copied, then press the MENU Key to display
 the Flight Plan Catalog Page Menu.
3) Turn the large right knob to highlight ‘Copy
 Flight Plan?’ (Figure 4-11) and press the
 ENT Key.
4) By default, the next empty catalog location
 is offered. To select a different location, turn
 the large right knob to select the flight plan
 number, use the small and large right knobs
 to enter a different number and press the
 ENT Key.
5) With ‘Yes?’ highlighted, press the ENT Key to
 copy the flight plan.

Deleting Flight Plans

Once finished with a flight plan, it can easily be deleted from the Flight Plan Catalog Page or the Active Flight Plan Page.

Deleting a flight plan:

1) From the Active Flight Plan Page: press the
 MENU Key to display the Active Flight Plan
 Page Menu. OR
2) From the Flight Plan Catalog Page: press the
 small right knob to activate the cursor, turn the
 large right knob to highlight the flight plan to
 be deleted, then press the MENU Key to display
 the Flight Plan Catalog Page Menu.
3) Turn the large right knob to highlight ‘Delete
 Flight Plan?’ (Figure 4-12) and press the
 ENT Key.
4) With ‘Yes?’ highlighted, press the ENT Key to
 delete the flight plan.
Flight Plan Catalog Options

The options (some covered on the preceding pages) available for the Flight Plan Catalog Page are listed in Table 4-1.

<table>
<thead>
<tr>
<th>Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate Flight Plan?</td>
<td>Allows the pilot to select the flight plan for navigation guidance, as described previously in this section</td>
</tr>
<tr>
<td>Invert & Activate FPL?</td>
<td>Allows the pilot to reverse the highlighted flight plan and select it for navigation guidance, as described previously in this section</td>
</tr>
<tr>
<td>Create New Flight Plan?</td>
<td>Allows the pilot to create a new flight plan, as described previously in this section</td>
</tr>
<tr>
<td>Crossfill?</td>
<td>Allows the pilot to transfer a Direct-to destination, the active flight plan, any stored flight plan or user waypoints to a second 400/500-series Garmin unit. Some crossfill operations can be done automatically. If both units are set to ‘auto’, a change in the direct-to destination or active flight plan on one unit is seen on the other. For additional information, see following procedure (in this section) or Section 8.2, Flight Planning Page: Crossfill.</td>
</tr>
<tr>
<td>Copy Flight Plan?</td>
<td>Allows the pilot to copy the selected flight plan to a new flight plan location, as described previously in this section. The copy function is useful for duplicating an existing flight plan before making changes.</td>
</tr>
<tr>
<td>Delete Flight Plan?</td>
<td>Allows the pilot to remove the selected flight plan from memory, as described previously in this section. Deleting a flight plan does not delete the individual waypoints contained in the flight plan from the database or user waypoint memory.</td>
</tr>
<tr>
<td>Delete All Flight Plans?</td>
<td>Allows the pilot to remove all flight plans from memory. See following procedure in this section.</td>
</tr>
<tr>
<td>Sort List By Number?/</td>
<td>Allows the pilot to sort numerically by the flight plan number or alphanumerically based upon the comment assigned to each flight plan. When one option is selected, the other option appears on the Flight Plan Catalog Page Menu.</td>
</tr>
<tr>
<td>Sort List by Comment?</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-1 Flight Plan Catalog Menu Options
Crossfilling flight plans between two 400/500-Series Garmin units:

1) Select the ‘Crossfill?’ option from the Flight Plan Catalog Page Menu (Figure 4-13) and press the ENT Key.

![Figure 4-13 Flight Plan Catalog Page Menu](image)

2) Turn the large right knob to select the ‘Method’ field (Figure 4-14).

![Figure 4-14 Crossfill Page](image)

3) Turn the small right knob to select ‘Auto’ or ‘Manual’ and press the ENT Key. ‘Auto’ automatically transfers the active flight plan or Direct-to selection to another 400/500-series Garmin unit, without user intervention.

4) If ‘Manual’ is selected: Turn the large right knob to select the ‘Transfer’ field, then turn the small right knob to select the type of information to transfer between units (active flight plan, flight plan, all user waypoints or a single user waypoint). When ‘Flight Plan’ or ‘User Waypoint’ is selected, a second field appears to the immediate right of the ‘Transfer’ field. Use the small and large right knobs to enter the number of the flight plan or the name of the user waypoint to be transferred.

5) The ‘Cross-side’ field allows the pilot to designate the sending and receiving units in a crossfill operation. Turn the large right knob to select the ‘Cross-side’ field, then turn the small right knob to select ‘To’ or ‘From’ (Figure 4-15). Press the ENT Key to confirm the selection.

![Figure 4-15 Transfer Window](image)

6) Turn the large right knob to highlight ‘Initiate Transfer?’ and press the ENT Key.
Deleting all flight plans:

1) Select the ‘Delete All Flight Plans?’ option from the Flight Plan Catalog Page Menu (Figure 4-16) and press the ENT Key.

2) A confirmation window appears (Figure 4-17). With ‘Yes?’ highlighted, press the ENT Key.

Sorting the catalog listing by number or comment:

Select the ‘Sort List By Number?’ or ‘Sort List By Comment?’ option (whichever is currently displayed) from the Flight Plan Catalog Page Menu (Figure 4-18) and press the ENT Key.
4.2 ACTIVE FLIGHT PLAN PAGE

The Active Flight Plan Page provides information and editing functions for ‘flight plan 00’, the flight plan currently in use for navigation. Once the pilot has activated a direct-to or flight plan, the Active Flight Plan Page shows each waypoint for the flight plan (or a single waypoint for a direct-to, Figure 4-19), along with the desired track (DTK) and distance (DIS) for each leg.

Active Flight Plan Options

The options shown in Table 4-1 are available for the Active Flight Plan Page.

Accessing the Active Flight Plan Menu Page:

1) Press the FPL Key to view the Active Flight Plan Page.
2) Press the MENU Key (Figure 4-20).

Figure 4-19 Active Flight Plan Page

Figure 4-20 Active Flight Plan Page Menu
Section 4

Flight Plans

<table>
<thead>
<tr>
<th>Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate Leg*</td>
<td>Activates/reactivates the flight plan and selects the highlighted leg as the ‘active leg’ (the leg which is currently used for navigation guidance)</td>
</tr>
<tr>
<td>Crossfill</td>
<td>Allows the pilot to transfer the active flight plan between two 400/500-series Garmin units in a dual unit installation (see Section 8.2, Flight Planning: Crossfill for additional information on this feature)</td>
</tr>
<tr>
<td>Copy Flight Plan</td>
<td>Copies the active flight plan to a flight plan catalog location, as described previously in Section 4.1 The copy function is useful for duplicating the active flight plan before making changes</td>
</tr>
<tr>
<td>Invert Flight Plan</td>
<td>Reverses the active flight plan (see Section 4.1, Activating Flight Plans and Inverting Flight Plans)</td>
</tr>
<tr>
<td>Delete Flight Plan</td>
<td>Allows the pilot to remove all waypoints from the selected flight plan, as described previously in Section 4.1 Deleting a flight plan does not delete the waypoints contained in the flight plan from the database or user waypoint memory</td>
</tr>
<tr>
<td>Select Approach*</td>
<td>Allows the pilot to select a published instrument approach for the destination airport, or replace the current approach with a new selection (in many cases, it is convenient to select approaches using the PROC Key as described in Section 5.1)</td>
</tr>
<tr>
<td>Select Arrival*</td>
<td>Allows the pilot to select a published standard terminal arrival route (STAR) for the destination airport or replace the current arrival with a new selection (Section 5.1 for information on selecting arrivals using the PROC Key).</td>
</tr>
<tr>
<td>Select Departure*</td>
<td>Allows the pilot to select a published standard instrument departure (SID) for the departure airport or replace the current departure with a new selection (see Section 5.1 for information on selecting departures using the PROC Key)</td>
</tr>
<tr>
<td>Remove Approach*</td>
<td>Deletes the currently selected approach from the active flight plan</td>
</tr>
<tr>
<td>Remove Arrival*</td>
<td>Deletes the current STAR from the active flight plan</td>
</tr>
<tr>
<td>Remove Departure*</td>
<td>Deletes the current SID from the active flight plan</td>
</tr>
<tr>
<td>Closest Point of FPL*</td>
<td>Calculates the bearing and closest distance that a flight plan passes from a reference waypoint May also be used to create a new user waypoint along the flight plan at the location closest to the reference waypoint</td>
</tr>
<tr>
<td>Change Fields*</td>
<td>Allows the pilot to select the desired data items to display on the Active Flight Plan Page, as described in this section</td>
</tr>
<tr>
<td>Restore Defaults*</td>
<td>Returns the data items to factory defaults, as described in this section</td>
</tr>
</tbody>
</table>

Table 4-2 Active Flight Plan Page Menu Options

Note: A ‘*’ in Table 4-2 indicates a procedure for using the listed option follows in this section.
The data fields for DTK and DIS are user-selectable and may be changed to display cumulative distance (CUM) to each waypoint, estimated time of arrival (ETA), estimated time enroute (ETE), or enroute safe altitude (ESA).

Changing a data field on the Active Flight Plan Page:

1) With the Active Flight Plan Page displayed, press the MENU Key to display the Active Flight Plan Page Menu.

2) Turn the large right knob to highlight ‘Change Fields?’ (Figure 4-21) and press the ENT Key.

3) Turn the large right knob to highlight the field to be changed.

4) Turn the small right knob to select the desired data item (Figure 4-22) and press the ENT Key.

5) Press the small right knob to remove the cursor.

Restoring factory default settings for data fields on the Active Flight Plan Page:

1) With the Active Flight Plan Page displayed, press the MENU Key to display the Active Flight Plan Page Menu.

2) Turn the large right knob to highlight ‘Restore Defaults?’ and press the ENT Key.

Activating a flight plan along a specific leg:

1) Press the small right knob to activate the cursor and turn the large right knob to highlight the desired destination waypoint.

2) Press the MENU Key, and select the ‘Activate Leg?’ option from the Active Flight Plan Page Menu (Figure 4-23) and press the ENT Key.

3) A confirmation window appears. With ‘Activate?’ highlighted, press the ENT Key.
SECTION 4
FLIGHT PLANS

Selecting an approach for a direct-to or flight plan destination airport:

1) Choose the ‘Select Approach?’ option from the Active Flight Plan Page Menu (Figure 4-24) and press the ENT Key.

2) A window appears listing the available approaches (Figure 4-25) for the destination airport. Turn the small right knob to highlight the desired approach and press the ENT Key.

3) A second window appears listing available transitions (Figure 4-26) for the approach. Turn the small right knob to highlight the desired transition waypoint and press the ENT Key. The ‘Vectors’ option assumes the pilot will receive vectors to the final course segment of the approach and will provide navigation guidance to intercept this final course.

4) Turn the large right knob to highlight ‘Load?’ or ‘Activate?’ and press the ENT Key. ‘Load?’ adds the approach to the flight plan without immediately using the approach for navigation guidance. This allows the pilot to continue navigating the original flight plan until cleared for the approach, but keeps the approach available for quick activation when needed.

5) For precision approaches, a reminder window appears indicating that GPS guidance on such approaches is strictly for monitoring only. To confirm this reminder, highlight ‘Yes?’ and press the ENT Key.
Selecting an arrival for a direct-to or flight plan destination airport:
1) Select the ‘Select Arrival?’ option from the Active Flight Plan Page Menu (Figure 4-27) and press the ENT Key.

2) A window appears listing the available arrivals (Figure 4-28) for the destination airport. Turn the small right knob to select the desired arrival and press the ENT Key.

3) A second window appears listing available transitions (Figure 4-29) for the arrival. Turn the small right knob to highlight the desired transition waypoint and press the ENT Key.

Selecting a departure for the departure airport:
1) Select the ‘Select Departure?’ option from the Active Flight Plan Page Menu and press the ENT Key.

2) A window appears listing the available departures for the departure airport. Turn the small right knob to select the desired departure and press the ENT Key.

3) A second window appears listing available transitions for the departure. Turn the small right knob to highlight the desired transition waypoint and press the ENT Key.

4) With ‘Load?’ highlighted, press the ENT Key.
Removing an approach, arrival, or departure from the active flight plan:

1) Select the ‘Remove Approach?’, ‘Remove Arrival?’, or ‘Remove Departure?’ option from the Active Flight Plan Page Menu (Figure 4-30) and press the ENT Key.

2) A confirmation window appears listing the procedure to be removed. With ‘Yes?’ highlighted, press the ENT Key.

Determining the closest point along the active flight plan to a selected waypoint:

1) Select the ‘Closest Point of FPL?’ option from the Active Flight Plan Page Menu (Figure 4-31) and press the ENT Key.

2) A window appears with the reference waypoint field highlighted. Use the small and large right knobs to enter the identifier of the reference waypoint and press the ENT Key.

3) A confirmation window appears for the selected reference waypoint (Figure 4-32). Press the ENT Key to accept the waypoint.

4) The GPS 400 displays the bearing (BRG) and distance (DIST) to the closest point along the flight plan, from the selected reference waypoint. To create a user waypoint at this location and add it to the flight plan, highlight ‘Load?’ and press the ENT Key. The name for the new user waypoint is derived from the identifier of the reference waypoint.
Shortcuts

A number of shortcuts are available to save time when using the Active Flight Plan Page. These shortcuts speed the process of removing approaches, departures, and arrivals, and aid in selecting a specific flight plan leg for navigation guidance.

On the preceding page, options to remove approaches, departures, and arrivals were introduced. This process may also be completed using the CLR Key, described as follows:

Removing an approach, departure, or arrival using the CLR Key:

1) With the Active Flight Plan Page displayed, press the small right knob to activate the cursor.

2) Turn the large right knob to highlight the title for the approach (Figure 4-33), departure, or arrival to be deleted. Titles appear in light blue directly above the procedure’s waypoints.

3) Press the CLR Key to display a confirmation window (Figure 4-34).

4) With ‘Yes?’ highlighted, press the ENT Key to remove the selected procedure.

This same process may also be used to remove individual waypoints from the active flight plan.

Removing a waypoint using the CLR Key:

1) With the Active Flight Plan Page displayed, press the small right knob to activate the cursor.

2) Turn the large right knob to highlight the identifier for the waypoint to be deleted. Identifiers appear in green text.

3) Press the CLR Key to display a confirmation window (Figure 4-35).

4) With ‘Yes?’ highlighted, press the ENT Key to remove the selected procedure.
The ‘Activate Leg?’ option is discussed previously in this section, which allows the pilot to specify which leg of the flight plan is used for navigation guidance. A shortcut also exists for this operation, using the Direct-to Key.

Activating a specific leg of the active flight plan:

1) Press the small **right** knob to activate the cursor and turn the large **right** knob to highlight the desired destination waypoint (Figure 4-36).

2) Press the **Direct-to** Key twice to display an ‘Activate Leg’ confirmation window (Figure 4-37).

3) With ‘Activate?’ highlighted, press the **ENT** Key.

When using instrument procedures, this feature can be used not only to activate a specific point-to-point leg, but to also activate the procedure turn portion of an approach, follow a DME arc, or activate a holding pattern.

Any approach, departure, or arrival can be reviewed on the appropriate airport page in the Waypoint Page Group (Section 6.1).

Reviewing a procedure while viewing a flight plan page:

1) With a flight plan page displayed, press the small **right** knob to activate the cursor.

2) Turn the large **right** knob to highlight the procedure header (Figure 4-38) and press the **ENT** Key to select the WPT Page Group.
SECTION 5: PROCEDURES

5.1 APPROACHES, DEPARTURES, AND ARRIVALS

The GPS 400 allows the pilot to fly non-precision and precision approaches to airports with published instrument approach procedures. All available approaches are stored on the Jeppesen NavData Card, and are automatically updated when the new card is inserted into the GPS 400. Subscription information for NavData cards is included in the GPS 400 package.

The Procedures Page (Figure 5-1) is displayed by pressing the PROC Key. The Procedures Page provides direct access to approaches, departures, and arrivals, based upon the active flight plan or direct-to destination. In either case, the departure and destination airports must have published procedures associated with them.

Selecting an approach, departure, or arrival:

1) Press the PROC Key to display the Procedures Page.
2) Turn the large right knob to highlight ‘Select Approach?’, ‘Select Departure?’, or ‘Select Arrival?’ (Figure 5-1) and press the ENT Key.
3) A window appears listing the available procedures (Figure 5-2). Turn the large right knob to highlight the desired procedure and press the ENT Key. (When a direct-to destination is selected, departures are offered for the nearest airport.)

4) A second window appears listing the available transitions (Figure 5-3). Turn the large right knob to highlight the desired transition waypoint and press the ENT Key. The approach ‘Vectors’ option assumes the pilot will receive vectors to the final course segment of the approach and will provide navigation guidance relative to the final approach course.
5) Turn the large right knob to highlight ‘Load?’ or ‘Activate?’ (approaches only) and press the ENT Key. ‘Load?’ adds the procedure to the flight plan without immediately using it for navigation guidance. This allows the pilot to continue navigating the original flight plan, but keeps the procedure available on the Active Flight Plan Page for quick activation when needed.

6) For precision approaches and some non-precision approaches, a reminder window appears indicating that GPS guidance on such approaches is strictly for monitoring only. Use an external VOR/ILS receiver and CDI (or HSI) for primary navigation. To confirm this reminder, highlight ‘Yes?’ and press the ENT Key.

Not all approaches in the database are approved for GPS use. When selecting an approach, a ‘GPS’ designation to the right of the procedure name (Figure 5-4) indicates the procedure can be flown using the GPS receiver. Some procedures do not have this designation, meaning the GPS receiver may be used for supplemental navigation guidance only. ILS approaches, for example, must be flown by tuning an external VLOC receiver to the proper frequency and coupling the VLOC receiver to the external CDI (or HSI).

Once an approach is selected, it may be activated for navigation from the Procedures Page. Activating the approach overrides the enroute portion of the active flight plan, proceeding directly to the approach portion (for a full approach, directly to the initial approach fix). Activating the approach also initiates automatic CDI scaling transition as the approach progresses.

Activating an approach:

1) Press the PROC Key to display the Procedures Page (Figure 5-5).

2) Turn the large right knob to highlight ‘Activate Approach?’ (Figure 5-5) and press the ENT Key.

3) A confirmation window will appear (Figure 5-6). With ‘Yes?’ highlighted, press the ENT Key.
Another Procedures Page option allows the pilot to activate the final course segment of the approach. This option assumes the pilot will receive vectors to the final approach fix (FAF) and provides guidance to intercept the final course, before reaching the FAF.

Activating the approach, with vectors to final:

1) Press the PROC Key to display the Procedures Page.
2) Turn the large right knob to highlight ‘Activate Vector-To-Final?’ (Figure 5-7) and press the ENT Key.

3) A confirmation widow will appear (Figure 5-7). With ‘Yes?’ highlighted, press the ENT Key.

In many cases, it may be easiest to load the full approach while still some distance away, enroute to the destination airport. Later, if vectored to final, use the steps above to select ‘Activate Vector-To-Final’—which makes the inbound course to the FAF waypoint active. Otherwise, activate the full approach using the ‘Activate Approach?’ option.

5.2 NON-PRECISION APPROACH OPERATIONS

The GPS 400 provides non-precision approach guidance using its built-in GPS receiver. The GPS receiver can also be used as a supplemental aid for precision approaches, but external localizer and glideslope receivers must be used for primary approach course guidance.

Approaches designed specifically for GPS are often very simple and don’t require overflying a VOR or NDB. Many non-precision approaches have GPS overlays to let the pilot fly an existing procedure (VOR, VOR/DME, NDB, RNAV, etc.) more accurately using GPS.

Many overlay approaches are complex (in comparison to GPS-only approaches). The GPS 400 displays and guides the pilot through each leg of the approach, automatically sequencing through each of these legs, up to the missed approach point (MAP). Approaches may be flown ‘as published’ with the full transition using any published feeder route or initial approach fix (IAF), or may be flown with a vectors-to-final transition.

NOTE: The following approach examples are intended for instructional use only and are not to be used for navigation.
Select the destination airport using the **Direct-to** Key, or as the last waypoint in the active flight plan.

2) Choose the ‘Select Approach?’ option from the Procedures Page (Section 5.1) or from the Active Flight Plan Page Menu (Section 4.2, Active Flight Plan Options).

3) Load the approach (often while enroute) in anticipation of its future use. This places the approach in the active flight plan, but retains course guidance in the enroute section until the approach is ‘activated’.

4) Activate the full approach or vectors-to-final, as appropriate. In some scenarios, it may be more convenient to immediately activate the approach and skip the load process outlined in the preceding step 3. The GPS 400 provides both options.

Approaches with Procedure Turns

The procedure turn portion of an approach is stored as one of the legs of the approach. For this reason, the GPS 400 requires no special operations from the pilot (other than flying the procedure turn itself) beyond what is required for any other type of approach.

This example uses the VOR Runway 03 approach for Lynchburg (Virginia) Regional Airport, KLYH, and assumes a departure from Frederick (Maryland) Municipal Airport, KFDK.
The steps required to set up and fly the approach are detailed below (refer to Figure 5-9 for the following steps):

1) Prior to departing KFDK, the destination (KLYH) is selected using the **Direct-to** Key or by creating a flight plan terminating at Lynchburg Regional.

2) While enroute to KLYH, view the ATIS frequency from the list on the NAV/COM Page (Section 2.6 and Figure 5-10). The ATIS frequency may be used to tune an external COM transceiver.

3) Press the **PROC** Key (Figure 5-11) and select the ‘VOR 03’ approach using the steps outlined in Section 5.1.

4) From the Transitions Window (Figure 5-12), select LYH VOR (the IAF). Also, select ‘Load?’ to load, but not activate, the approach.

5) Press the **PROC** Key, select ‘Activate Approach?’ and press the **ENT** Key to activate the approach.
Flying the Procedure Turn

Refer to Figure 5-13 for the following steps:

1) Within 30 nm of the destination airport, the GPS 400 switches from enroute to terminal mode (as indicated in the lower left corner of the screen). The switch to terminal mode is accompanied by a gradual Course Deviation Indicator (CDI) scale transition from 5.0 to 1.0 nm, full scale deflection (Figure 5-14).

2) Several miles prior to reaching the IAF (LYH), the pilot may wish to review the approach sequence. Press the FPL Key to display the Active Flight Plan Page. Press the small right knob, and then turn the large right knob to review each segment of the approach (Figure 5-15). When finished, press the FPL Key again to return to the previous page.

3) When approaching the IAF (LYH), a waypoint alert (‘NEXT DTK 205°’) appears in the lower right corner of the screen (Figure 5-16). As the distance (DIS) to the IAF approaches zero, the alert is replaced by a turn advisory (‘TURN TO 205°’). Dial the outbound course of 205° into the CDI (or HSI) using the OBS knob.
4) Fly the outbound course.
5) Approximately one minute after passing the FAF (LYH), the alert message ‘START PROC TRN’ appears in the lower right corner of the screen. Initiate the procedure turn at any time after receiving this alert message.

Refer to Figure 5-17 for the following steps:

6) Course guidance is provided relative to the outbound leg from the FAF. No guidance through the procedure turn itself is given. The procedure turn is displayed on the Map Page and indicated as the active leg on the Default NAV Page and the Active Flight Plan Page. The CDI needle starts moving to the right.

7) When turning to intercept the inbound course, the GPS 400 sequences to the inbound leg to the FAF, the CDI needle swings to the opposite side to provide proper sensing along the final course segment and ‘NEXT DTK 025°’ appears in the lower right corner of the screen (Figure 5-18).

8) Turn to the final approach course.
9) Within 2.0 nm of the FAF (LYH), the GPS 400 switches from terminal mode to approach mode. CDI scaling is tightened from 1.0 to 0.3 nm, full scale deflection.
10) When approaching the FAF, a waypoint alert (‘NEXT DTK 026°’) appears in the lower right corner. Make any course adjustments necessary for the final course segment (FAF to MAP).
11) After crossing the FAF, the destination sequences to the MAP (‘RW03’, the runway threshold, see Figure 5-19). Fly toward the MAP.

![Figure 5-19 Sequence to MAP](image)

NOTE: When viewing the Map Page, note that the final course segment is displayed in magenta (the active leg of the flight plan always appears in magenta) and a dashed line extends the course beyond the MAP. The dashed line is provided for situational awareness only and should NOT be used for navigation. Follow the published missed approach procedures.

12) When approaching the MAP, a waypoint alert (‘APPRCHING WPT’) appears in the lower right corner.

13) After crossing the MAP, ‘SUSP’ appears above the OBS Key (Figure 5-20), indicating that automatic sequencing of approach waypoints is suspended at the MAP. A ‘from’ indication is displayed on the CDI and Default NAV Page, but course guidance along the final approach course continues. If a missed approach is required, use the OBS Key to initiate the missed approach sequence, as outlined, beginning on the following page.

![Figure 5-20 ‘SUSP’ Annunciation](image)

Flying the Missed Approach

After passing the MAP, if the runway is not in sight the pilot must execute a missed approach. The GPS 400 continues to give guidance along an extension of the final course segment (FAF to MAP) until the pilot manually initiates the missed approach procedure (as mentioned previously in reference to the ‘SUSP’ advisory).

![Figure 5-21 Sequence to MAP](image)
The OBS Key is used to initiate the missed approach, as follows (refer to Figure 5-21 for the following steps):

1) Press the OBS Key. The missed approach holding point (MAHP; in this case ‘SWARM’ intersection) is automatically offered as the destination waypoint (Figure 5-22).

![Figure 5-22 Missed Approach Holding Point](image)

NOTE: In some cases, an additional hold waypoint is added to the missed approach sequence. This additional waypoint is used as an aid in establishing the holding pattern, especially where the MAP and MAHP are the same waypoint.

2) Follow the missed approach procedures, as published on the approach plate, for proper climb and heading instructions. The GPS 400 provides guidance to the holding pattern, along the 053° radial from LYH VOR.

3) An alert message in the lower right-hand corner of the screen recommends entry procedures for the holding pattern (i.e., ‘HOLD DIRECT’, ‘HOLD PARALLEL’, or ‘HOLD TEARDROP’, see Figure 5-23). When flying the holding pattern, a timer appears on the Default NAV Page (Figure 5-24). The timer automatically resets on the outbound side of the hold when the aircraft is abeam the hold waypoint. The timer again resets as the aircraft turns inbound (within approximately 30° of the inbound course). This allows the pilot to use standard timing (typically one minute) to fly the inbound and outbound legs of the hold.

![Figure 5-23 ‘Hold Teardrop’ Annunciation](image)

Figure 5-23 ‘Hold Teardrop’ Annunciation

![Figure 5-24 Hold Timer](image)

Figure 5-24 Hold Timer

4) The GPS 400 provides course guidance only on the inbound side of the holding pattern. When leaving the holding pattern to re-fly the approach (or another approach) press the PROC Key to ‘Select Approach?’ or ‘Activate Approach?’ as previously described. Or, use the Direct-to Key to select another destination.
Flying an Approach with a Hold

Starting where the previous example left off, assume weather conditions resulted in a missed approach at Lynchburg Regional. The pilot has decided to divert to Farmville Regional (KFVX) instead (refer to Figure 5-25 for the following steps).

3) Press the ENT Key twice.

This time, the pilot selects the GPS runway 21 approach into Farmville Regional. The GPS runway 21 approach begins with a holding pattern at the IAF, BODRY intersection.

4) Press the PROC Key and select the ‘GPS 21’ approach. (Figure 5-27, also Section 5.1 for additional instructions.)

5) From the Transitions Window, select BODRY intersection as the IAF (Figure 5-28). Also, select ‘Activate?’ to load and activate the approach.

6) Once the approach has been activated, the Active Flight Plan Page appears (Figure 5-29). The pilot may review the approach sequence by pressing the small right knob and turning the large right knob. Press the FPL Key to return to the navigation pages.
Refer to Figure 5-30 for the following steps.

7) As in the last example, within 30 nm of the airport, the GPS 400 switches from enroute to terminal mode, and the CDI scale transitions from 5.0 to 1.0 nm, full scale deflection.

8) Just prior to crossing BODRY intersection, a ‘HOLD TEARDROP’ alert appears in the lower right corner of the screen to suggest the proper holding pattern entry (Figure 5-31). (‘HOLD DIRECT’ or ‘HOLD PARALLEL’ may be offered on other similar approaches.)

9) As mentioned in the missed approach example, the Default NAV Page displays a timer during the holding pattern (Figure 5-32). The timer can be used to fly the one minute outbound portion of the holding pattern. (The holding pattern is displayed on the Map Page and indicated as the active leg on the Default NAV Page and the Active Flight Plan Page.)

10) When crossing the IAF, ‘SUSP’ appears above the OBS Key (Figure 5-32), indicating that automatic sequencing of approach waypoints is temporarily suspended. As the aircraft turns inbound, ‘SUSP’ is cancelled and the GPS 400 returns to automatic sequencing.
NOTE: If the pilot needs to lose extra altitude or speed by going around the holding pattern again, press the OBS Key to manually suspend waypoint sequencing before crossing the holding waypoint the second time. If this waypoint has already been passed, re-activate the holding pattern using the steps described in Section 5.2.

Refer to Figure 5-33 for the following steps.

11) When approaching BODRY intersection, a waypoint alert ('APPRCHING WPT') appears in the lower right corner of the screen (Figure 5-34).

![Figure 5-33 Approach Mode](image)

12) At 2.0 nm from the FAF (DEPOY intersection), the GPS 400 switches from terminal mode to approach mode. CDI scaling is tightened from 1.0 to 0.3 nm, full scale deflection.
13) When approaching the FAF, a waypoint alert (‘NEXT DTK 209°’) appears in the lower right corner (Figure 5-35). Make any course adjustments necessary for the final course segment (FAF to MAP).

Figure 5-35 Final Approach

14) After crossing the FAF, the destination sequences to the MAP (‘RW21’, the runway threshold). With the needle centered, fly toward the MAP, observing the altitude minimums dictated by the approach plate. When viewing the Map Page, note that the final course segment is displayed in magenta, (the active leg of the flight plan always appears in magenta) and a dashed line extends the course beyond the MAP. Do not follow this extended course. Instead, follow published missed approach procedures.

15) When approaching the MAP, a waypoint alert (‘APPRCHING WPT’) appears in the lower right corner.

16) After crossing the MAP, ‘SUSP’ appears above the OBS Key (Figure 5-36), indicating that automatic sequencing of approach waypoints is suspended at the MAP. A ‘from’ indication is displayed on the CDI and Default NAV Page, but course guidance along the final approach course continues. If a missed approach is required, use the OBS Key to initiate the missed approach sequence, as outlined in this section.

Figure 5-36 Missed Approach
Flying a DME Arc Approach

The GPS overlay for a DME arc approach uses additional Jeppesen-provided waypoints to define the arc. These waypoints are indicated by ‘D’ as the first letter in the waypoint name. This is followed by three numbers which indicate the radial the waypoint lies on. The last letter indicates the radius of the arc.

Either of the following may be done to intercept the arc for a DME arc approach:

- Follow a specified radial inbound to intercept the IAF.
- Follow ATC vectors which allow the pilot to intercept the arc at any point along the arc.

This example is based upon a flight from Hutchinson (Kansas) Municipal (KHUT) to Billard Municipal (KTOP) in Topeka, Kansas. The VOR/DME runway 22 approach is selected, along with ‘D258G’ as the IAF (refer to Figure 5-37 for the following steps).

1) Select Billard Municipal (KTOP) as the destination, via the Direct-to Key or as the last waypoint in a flight plan (Figure 5-38).

2) Press the PROC Key (Figure 5-39) and select the ‘VOR 22’ approach (Figure 5-40) using the steps outlined in Section 5.1. From the Transitions Window, select ‘D258G’ as the IAF. Also, select ‘Load?’ (or ‘Activate?’), if already cleared for the approach.

NOTE: As this manual was being written, the letter/number DME arc names were being replaced with standard five-letter intersection names. Either naming convention may be used for an approach.
DO NOT USE FOR NAVIGATION

Figure 5-40 Approach Window

Billard Muni (Topeka, KS)
VOR or GPS Rwy 22

Figure 5-41 Terminal Mode

Refer to Figure 5-41 for the following steps.

3) Within 30 nm of KTOP, the GPS 400 switches from enroute mode to terminal mode and the CDI scale transitions from 5.0 to 1.0 nm, full scale deflection.

4) If the approach has not yet been activated (in step 2), do so when cleared for the approach (Figure 5-42).

5) When approaching the IAF (D258G), a waypoint alert (‘NEXT DTK 353°’) appears in the lower right corner of the screen (Figure 5-43). As the distance (DIS) to the IAF approaches zero, the alert is replaced by a turn advisory (‘TURN TO 353°’).

6) Follow the arc; when the course select setting and desired track differ by more than 10°, a ‘Set course to ###°’ message appears on the Message Page.
7) The next point in the approach is an intermediate fix, labeled ‘D025G’. When approaching this intermediate fix, a waypoint alert (‘NEXT DTK 205°’) appears in the lower right corner of the screen (Figure 5-44). As the distance to this fix approaches zero, the alert is replaced by a turn advisory (‘TURN TO 205°’). Dial this course into the CDI (or HSI) using the OBS knob.

8) At 2.0 nm from the FAF (TOP VOR), the GPS 400 switches from terminal mode to approach mode. CDI scaling is tightened from 1.0 to 0.3 nm, full scale deflection.

Refer to Figure 5-45 for the following steps.

9) When approaching the FAF, ‘NEXT DTK 214°’ appears in the lower right corner of the screen (Figure 5-46). Select this course on the CDI (or HSI) using the OBS knob.
10) After crossing the FAF, the destination sequences to the MAP (‘RW22’, the runway threshold). With the needle centered, fly toward the MAP, observing the altitude minimums dictated by the approach plate. When viewing the Map Page, note that the final course segment is displayed in magenta (the active leg of the flight plan always appears in magenta) and a dashed line extends the course beyond the MAP (Figure 5-47).

![Figure 5-47 Final Course Segment](image)

11) When approaching the MAP, a waypoint alert (‘APPRCHING WPT’) appears in the lower right corner.

12) After crossing the MAP, ‘SUSP’ appears above the OBS Key (Figure 5-48), indicating that automatic sequencing of approach waypoints is suspended at the MAP. A ‘from’ indication is displayed on the CDI and Default NAV Page, but course guidance along the final approach course continues. Do not follow this extended course. Follow published missed approach procedures using the OBS Key to initiate the missed approach sequence, as outlined in ‘Flying the Missed Approach’ in this section.

![Figure 5-48 ‘SUSP’ Annunciation](image)

Vectors to Final

Take a second look at the ‘VOR 22’ approach into Billard Municipal. Instead of following the DME arc, ATC tells the pilot to expect vectors onto the final approach course. There are several ways to select ‘vectors to final’ with the GPS 400. The first two options below normally require the least workload to accomplish:

- When the approach is first selected, choose ‘VECTORS’ from the Transitions Window.
- Load a full approach (including the IAF from the Transitions Window) as described in Section 5.1. When cleared, press the PROC Key and select ‘Activate Vectors-To-Final?’.
- Load the full approach as described in Section 5.1. Use the Direct-to Key (by pressing it twice) from the Active Flight Plan Page to select the desired leg of the approach.
Selecting ‘VECTORS’ from the Transitions Window:

1) Select Billard Municipal (KTOP) as the destination, using the Direct-to Key, or as the last waypoint in a flight plan.

2) Press the PROC Key and select the ‘VOR 22’ approach using the steps outlined in Section 5.1.

3) From the Transitions Window, select ‘VECTORS’ (Figure 5-49).

4) Select ‘Load?’ (or ‘Activate?’, if already cleared for the approach).

Activating vectors-to-final from the Procedures Page:

1) Select Billard Municipal (KTOP) as the destination, using the Direct-to Key or as the last waypoint in a flight plan.

2) Press the PROC Key and select the ‘VOR 22’ approach using the steps outlined in Section 5.1.

3) From the Transitions Window, select ‘D258G’ as the IAF (Figure 5-50). Also, select ‘Load?’.

4) When cleared, press the PROC Key and select ‘Activate Vector-To-Final?’ (Figure 5-51).

Flying the Vectors Approach

With ‘vectors to final’ selected, the CDI needle remains off center until the aircraft is established on the final approach course. With the approach activated, the Map Page displays an extension of the final approach course in magenta (magenta is used to depict the active leg of the flight plan) and ‘VTF’ appears as part of the active leg on the Default NAV Page (as a reminder that the approach was activated with vectors-to-final).
DO NOT USE FOR NAVIGATION

Figure 5-52 Terminal Mode

In this example, we'll assume ATC vectors result in a rectangular course to intercept final, as follows (refer to Figure 5-52 for the following steps):

1) Within 30 nm of KTOP, the GPS 400 switches from enroute mode to terminal mode and the CDI scale transitions from 5.0 to 1.0 nm, full scale deflection.

2) If the approach has not already been activated, activate the approach (with vectors-to-final). This allows the GPS 400 to provide guidance to the final approach course.

3) ATC instructs the pilot to turn left to a heading of 025°. This places the aircraft parallel to the final approach course in the opposite direction (Figure 5-53). CDI needle deflection is to the left.

4) ATC instructs the pilot to turn right to a heading of 115° (Figure 5-54).

5) ATC instructs the pilot to turn right to a heading of 175° to intercept the final approach course. When converging with the final approach course the needle moves toward the center. (In Figure 5-55, the needle has not yet returned to the on-screen CDI, since the current position is still 1.7 nm right of the final approach course.)
Figure 5-56 Approach Mode

Refer to Figure 5-56 for the following steps.

6) At 2.0 nm from the FAF (TOP VOR), the GPS 400 switches from terminal mode to approach mode (Figure 5-57). CDI scaling is tightened from 1.0 to 0.3 nm, full scale deflection.

7) When approaching the FAF, a waypoint alert (‘NEXT DTK 214°’) appears in the lower right corner (Figure 5-58).

8) After crossing the FAF, the destination sequences to the MAP (‘RW22’).

9) When approaching the MAP, a waypoint alert (‘APPRCHING WPT’) appears in the lower right corner.

10) After crossing the MAP, ‘SUSP’ appears above the OBS Key (Figure 5-59), indicating that automatic sequencing of approach waypoints is suspended at the MAP. A ‘from’ indication is displayed on the CDI and Default NAV Page, but course guidance along the final approach course continues. Do not follow this extended course. Follow published missed approach procedures using the OBS Key to initiate the missed approach sequence, as outlined in this section.

Figure 5-57 Approach Mode

Figure 5-58 Waypoint Alert

Figure 5-59 Final Approach
Course From Fix Flight Plan Legs

Certain approach, departure, and arrival procedures in the Jeppesen database contain course from fix flight plan legs. The GPS 400 is able to load these legs into the flight plan along with the rest of the procedure data, and provide navigation along these legs.

There are three different types of course from fix legs:

- Course from fix to distance, or Course from fix to DME distance
- Course from fix to altitude
- Course from fix to manual sequence

Course from fix to distance legs appear in the flight plan like normal waypoints, but the destination name always begins with a ‘D’, followed by a distance in nm from the waypoint fix (Figure 5-60).

Figure 5-60 Active Flight Plan Page

1) At the initial approach fix (PMD), a waypoint alert (‘NEXT DTK 070°’) appears in the lower right corner of the screen. As the distance to the IAF approaches zero, the alert is replaced by a turn advisory (‘TURN TO 070°’). Dial the outbound course into the CDI (or HSI) using the OBS knob.

2) Fly the ‘course from fix to distance’ leg, as shown on the Active Flight Plan Page and the Default NAV Page (Figures 5-62 and 5-62). Note the magenta line in Figure 5-63, which represents the currently active leg of the approach. The distance (DIS) displayed is TO the ‘D13.0’ point. The flight plan automatically sequences to the next leg upon reaching ‘D13.0’.

Figure 5-61 KPMD Approach

This example uses the VOR/DME RWY 25 approach into Palmdale, California, (KPMD) and includes a teardrop course reversal (refer to Figure 5-61 for the following steps).
3) At 13.0 nm from the FAF, a waypoint alert (‘NEXT DTK 265°’) appears in the lower right corner of the screen. Turn to intercept the final approach course and watch for the CDI needle to begin to center.

4) When approaching the intermediate fix (CF25), a waypoint alert (‘NEXT DTK 265°’) appears.

5) Within 2.0 nm of the FAF (THERO), the GPS 400 switches from terminal mode to approach mode. ‘APR’ appears in the lower left corner of the screen—replacing ‘TERM’. CDI scaling is tightened from 1.0 to 0.3 nm, full scale deflection.

6) When approaching the FAF, ‘NEXT DTK 265°’ appears in the lower right corner of the screen.

7) After crossing the FAF, the destination sequences to the MAP (MA25).

8) When approaching the MAP, a waypoint alert (‘APPRCHING WPT’) appears in the lower right corner of the screen.

9) After crossing the MAP, ‘SUSP’ appears above the OBS Key, indicating that automatic sequencing of approach waypoints is suspended at the MAP. If a missed approach is required, use the OBS Key to initiate the missed approach sequence, as outlined below.
Course from fix to altitude legs show the specific target altitude on the Active Flight Plan Page (Figure 5-64) and the Default NAV Page (Figure 5-65). The missed approach sequence for the Palmdale VOR/DME RWY 25 approach includes a course from fix to altitude leg.

![Figure 5-64 Active Flight Plan Page](image)

Figure 5-64 Active Flight Plan Page

![Figure 5-65 Default NAV Page](image)

Figure 5-65 Default NAV Page

Figure 5-66 Palmdale Missed Approach

In this instance, the leg corresponds to the initial phase of the missed approach, which reads 'Climb to 5000' outbound via PMD VOR R-282'. Refer to Figure 5-66 for the following steps.

1) After crossing the MAP, press the OBS Key. The missed approach sequence is automatically offered, starting with the course from fix to altitude leg. The ‘NEXT DTK 282°’ alert appears in the lower right corner of the screen.

2) Note that within a few seconds of pressing the OBS Key to release suspend mode and start the approach sequence, ‘SUSP’ re-appears above the OBS Key as the GPS 400 returns to suspend mode. This is normal when flying a course from fix to altitude leg and indicates that automatic leg sequencing is suspended.
3) Fly the outbound course. The Map Page depicts the flight path extending indefinitely from PMD VOR (Figure 5-67). The distance (DIS) on the Default NAV Page, the Map Page, and the Active Flight Plan Page increases, indicating the distance back to PMD VOR.

![Figure 5-67 Map Page](image)

4) Upon reaching the desired altitude (5000’), press the OBS Key to return to automatic leg sequencing. Confirm that ‘SUSP’ no longer appears directly above the OBS Key.

5) An alert (‘NEXT DTK 126°’) appears, providing guidance to the inbound course (Figure 5-68). The actual desired track (DTK) depends on the ground speed and distance from PMD VOR. Intercept and fly the inbound course.

![Figure 5-68 Waypoint Alert](image)

6) When approaching PMD VOR (the missed approach holding point), an alert message in the lower right-hand corner of the screen recommends the holding pattern entry procedure (‘HOLD PARALLEL’). When flying the holding pattern, a timer appears on the Default NAV Page. The timer automatically resets on each outbound and inbound portion of the holding pattern.

7) Note that the GPS 400 again displays ‘SUSP’ above the OBS Key. Automatic waypoint sequencing is suspended at the missed approach holding point. A waypoint alert (‘APPRCHING WPT’) appears in the lower right corner of the screen each time the aircraft approaches PMD VOR in the holding pattern.

8) When leaving the holding pattern, press the PROC Key to reactivate the approach, or select a different approach, or press the Direct-to Key to select another destination.
Course from fix to manual sequence legs appear on the Active Flight Plan Page and the Map Page with ‘man seq’ in place of a waypoint identifier. An example of this type of course leg appears in the COASTAL ONE DEPARTURE from Westfield, Massachusetts (Barnes Municipal). The example leg corresponds to the departure leg from Barnes Municipal and appears (as in Figure 5-69) on the Active Flight Plan Page and the Default NAV Page:

Refer to Figure 5-69 for the following steps.
1) Select the departure (CSTL1) from the Procedures Page, then select the departure runway, (RW02 in this example, see Figure 6-70) and transition (GEDIC). Refer to Section 5.1 for instructions on selecting departures.

2) When departing the airfield, ‘NEXT DTK 026°’ appears in the lower right corner of the screen and ‘SUSP’ appears directly above the OBS Key, which indicates the aircraft is now on the course-from-fix-to-manual-sequence leg. The distance displayed on the Active Flight Plan Page, the Default NAV Page (Figure 5-71), and the Map Page is FROM the waypoint fix (the departure runway in this example).
3) Fly the outbound course. Once cleared to sequence to the next leg, press the OBS Key. Confirm that ‘SUSP’ no longer appears directly above the OBS Key. An alert (‘NEXT DTK 186°’) appears in the lower right corner of the screen (Figure 5-72) to provide guidance to the next waypoint (HFD VOR). The actual desired track (DTK) depends on the ground speed and distance from HFD VOR.

4) Once the OBS Key is pressed, the GPS 400 automatically sequences to each waypoint along the remainder of the departure route, including the selected transition.

5.3 POINTS TO REMEMBER FOR ALL APPROACHES

- The GPS 400 is designed to complement printed approach plates and vastly improve situational awareness throughout the approach. However, the pilot must always fly an approach as it appears on the approach plate.

- The active leg (or the portion of the approach currently in use) is depicted in magenta on the Map Page. When flying the approach, the GPS 400 automatically sequences through each leg of the approach unless ‘SUSP’ appears above the OBS Key. ‘SUSP’ indicates that automatic sequencing of approach waypoints is suspended on the current leg and normally appears at holding patterns and upon crossing the missed approach point (MAP).
SECTION 6: WPT PAGES

6.1 WPT PAGE GROUP

Section 2 introduced the GPS 400’s main page groups (Table 6-1)—NAV, WPT, AUX, NRST—and described each page in the NAV group. This second page group (WPT) provides information for the thousands of airports, VORs, NDBs, intersections, runways, frequencies, and procedures stored on the Jeppesen NavData Card. A WPT page is also provided to display information for up to 1,000 user-created waypoints.

<table>
<thead>
<tr>
<th>Page Groups</th>
<th>NAV Group</th>
<th>WPT Group</th>
<th>AUX Group</th>
<th>NRST Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>see Section 2</td>
<td>10 WPT Pages</td>
<td>see Section 8</td>
<td>see Section 7</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-1 Page Groups

Quickly selecting a WPT page:
1) From any page, press and hold the CLR Key to select the Default NAV Page (skip this step if already viewing any of the main pages.)
2) Turn the large right knob to select the WPT Page Group. ‘WPT’ appears in the lower right corner of the screen.
3) Turn the small right knob to select the desired WPT page.

NOTE: The GPS 400 uses ICAO identifiers for all airports. All U.S. airport identifiers which contain only letters use the prefix ‘K’. For example, Los Angeles International is KLAX under the ICAO standard. Other airports, such as Otten Memorial (3VS), that contain numbers in the identifier, do not require the ‘K’ prefix. Many foreign countries use two letter prefixes.

The WPT Page Group includes ten pages (Figure 6-1). While viewing any WPT page, turn the small right knob to select a different WPT page. The first six pages provide detailed information for the selected airport: location, runways, frequencies, approaches, arrivals, and departures. The last four pages provide information for intersections, NDBs, VORs, and user-created waypoints.

After a WPT page is selected, information for a waypoint may be viewed by entering the identifier (or name) of the desired waypoint. Airports, NDBs, and VORs may be selected by identifier, facility name, or location (city).
SECTION 6
WPT PAGES

Entering a waypoint identifier:
1) Select the desired WPT page and press the small right knob to activate the cursor.
2) Turn the small right knob to select the first character of the waypoint’s identifier.
3) Turn the large right knob to select the next character field.
4) Turn the small right knob to select the desired character.
5) Repeat steps 3 and 4 until the identifier is selected, then press the ENT Key.
6) To remove the flashing cursor, press the small right knob.

Entering a waypoint facility name or city location:
1) Select the Airport Location Page, NDB Page, or VOR Page from the WPT Page Group (as described on the preceding page).
2) Press the small right knob to activate the cursor.
3) Turn the large right knob to select the facility name or location (city) field.
4) Turn the small right knob to select the desired character (Figure 6-2).
5) Turn the large right knob to select the next character field.
6) Repeat steps 4 and 5 until the facility name or location is selected, then press the ENT Key (Figures 6-3 and 6-4).
7) To remove the flashing cursor, press the small right knob.
Duplicate Waypoints

Once the identifier, facility name, or location is entered, all six airport pages display information for the selected airport. When entering an identifier, facility name, or location, the GPS 400’s Spell’N’Find feature scrolls through the database, displaying those waypoints matching the characters that have been entered to that point. If duplicate entries exist for the entered facility name or location, additional entries may be viewed by continuing to turn the small right knob during the selection process. If duplicate entries exist for an entered identifier, a Duplicate Waypoint Window appears when the identifier is selected (by pressing the ENT Key).

Selecting a facility name or location, where duplicate entries exist:

1) Select the desired facility name or location, following the preceding steps under ‘To enter a waypoint facility name or city location’.

2) When spelling the facility name or location, using the small and large right knobs, the GPS 400’s Spell’N’Find feature selects the first entry (Figure 6-5) in the database based upon the characters entered up to that point.

3) Continue turning the small right knob to scroll through any additional database listings (Figure 6-6) for the selected facility name or location. Scroll backwards with the small right knob if the desired facility name or location has been scrolled past.

4) Press the ENT Key to select the desired facility name or location.

5) To remove the flashing cursor, press the small right knob.

Selecting a waypoint identifier from a list of duplicates:

1) Select the desired airport or NAVAID identifier following the preceding steps under ‘To enter a waypoint facility name or city location’.

2) A Duplicate Waypoints Window appears (Figure 6-7). Turn the large right knob to select the desired waypoint and press the ENT Key.

3) To remove the flashing cursor, press the small right knob.
6.2 AIRPORT LOCATION PAGE

The Airport Location Page (Figure 6-8) displays the latitude, longitude, and elevation of the selected airport. The Airport Location Page also displays facility name and location, as well as fuel availability, available approaches, radar coverage, and airspace type.

1. Position (Latitude/Longitude)
2. Facility Name and Location (City)
3. Radar Coverage
4. Airport Identifier, Symbol, and Type
5. Field Elevation and Available Fuels
6. Airspace Type
7. Best Available Approach
8. Current Page Group
10. Number of Pages in Current Page Group

The following descriptions and abbreviations are used:

- **Type** - Usage type: Public, Heliport, Military, or Private
- **Position** - Latitude/Longitude (degrees/minutes or degrees/minutes/seconds), MGRS, or UTM/UPS
- **Elevation** - In feet or meters
- **Fuel** - For public-use airports, the available fuel type(s) are: Avgas (80-87/100LL/100-130/Mogas), Jet, or None
- **Approach** - Best available approach: ILS, MLS, LOC, LDA, SDF, GPS, VOR, RNAV (‘RNV’), LORAN (‘LOR’), NDB, TACAN (‘TCN’), Helicopter (‘HEL’), or VFR
- **Radar** - Radar coverage: Yes or No
- **Airspace** - Control environment: Class B, Class C, Class D, CTA, TMA, TRSA, or none
6.3 AIRPORT RUNWAY PAGE

The Airport Runway Page (Figure 6-9) displays runway designations, length, surface type, and lighting for the selected airport. A map image of the runway layout and surrounding area is also displayed on the Airport Runway Page. The map image range appears in the lower left corner and is adjustable using the RNG Key. For airports with multiple runways, information for each runway is available.

Displaying information for each additional runway:
1) Press the small right knob to activate the cursor.
2) Turn the large right knob to place the cursor on the runway designation field (Figure 6-9).
3) Turn the small right knob to display a window listing all runways for the selected airport (Figure 6-10).
4) Continue turning the small right knob to select the desired runway.
5) Press the ENT Key to display information for the selected runway on the Airport Runway Page (Figure 6-11).
6) To remove the flashing cursor, press the small right knob.
SECTION 6
WPT PAGES

Adjusting the range of the map image:

1) Press the down arrow of the **RNG** Key to display a smaller map area.

2) Press the up arrow of the **RNG** Key to display a larger map area.

The following descriptions and abbreviations are used on the Airport Runway Page:

- **Type** - Usage type: Public, Heliport, Military, or Private
- **Surface** - Runway surface types include: Hard, Turf, Sealed, Gravel, Dirt, Soft, Unknown, or Water
- **Lighting** - Runway lighting types include: No Lights, Part Time, Full Time, Unknown, or Frequency (for pilot-controlled lighting)

6.4 AIRPORT FREQUENCY PAGE

The Airport Frequency Page displays radio frequencies and frequency types for the selected airport, as well as sector and altitude restrictions (where applicable). If the selected airport has an ILS approach, the localizer frequency(ies) are also listed on the Airport Frequency Page (Figure 6-12). COM and VLOC frequencies are for reference only.

![Airport Frequency Page](image)

Figure 6-12 Airport Frequency Page

Scrolling through the frequency list:

1) Press the small **right** knob to activate the cursor.

2) Turn the large **right** knob to scroll through the list (Figure 6-13). If there are more frequencies in the list than can be displayed on the screen, a scroll bar (Figure 6-12) along the right-hand side of the screen indicates the cursor’s position within the list.
3) To remove the flashing cursor, press the small **right** knob.

Some listed frequencies may include designations for limited usage, as follows:
- ‘TX’ - transmit only
- ‘RX’ - receive only
- ‘PT’ - part time frequency

If a listed frequency has sector or altitude restrictions, the frequency is preceded by an ‘Info?’ designation.

Viewing usage restrictions for a frequency:

1) Turn the large **right** knob to place the cursor on the ‘Info?’ designation directly to the left of the desired frequency (Figure 6-14).

2) Press the **ENT** Key to display the restriction information (Figure 6-15).

3) To return to the Airport Frequency Page, press the **ENT** Key.

The following descriptions and abbreviations are used on the Airport Frequency Page:
- **Type** - Usage type: Public, Heliport, Military, or Private
- **Frequency** - Communication frequencies which may include restrictions:
 - Approach
 - Arrival
 - Class B
 - Class C
 - CTA
 - Departure
 - TMA
 - Terminal
 - TRSA

Communication frequencies without restrictions:
- ATIS
- ASOS
- AWOS
- Center
- Clearance
- Gate
- Control
- Ground
- Helicopter
- Multicom
- Pre-taxi
- Radar
- Ramp
- Other
- Tower
- Unicom

Navigation frequencies:
- ILS
- LOC
6.5 AIRPORT APPROACH PAGE

The Airport Approach Page (Figure 6-16) shows the available approach procedures for the selected airport. Where multiple initial approach fixes (IAFs) and feeder routes are available, that information may also be displayed. A map image provides a layout diagram for each approach and transition.

![Airport Approach Page](image)

Figure 6-16 Airport Approach Page

Scrolling through the available approaches and transitions:

1) Press the small **right** knob to activate the cursor.

2) Turn the large **right** knob to place the cursor on the approach (APR) procedure name field (Figure 6-16).

3) Turn the small **right** knob to display a window of available approaches for the selected airport (Figure 6-17). Continue turning the small **right** knob to select the desired approach.

![Approach Window](image)

Figure 6-17 Approach Window

4) Press the **ENT** Key. The cursor moves to the transitions (TRANS) field.

5) Turn the small **right** knob to display a window of available transitions (Figure 6-18). Continue turning the small **right** knob to select the desired transition or select ‘VECTORS’ for guidance only along the final course segment of the approach.

![Transitions Window](image)

Figure 6-18 Transitions Window

6) Press the **ENT** Key. To remove the flashing cursor, press the small **right** knob.
NOTE: Not all approaches in the database are approved for GPS use. When selecting an approach, a ‘GPS’ designation to the right of the procedure name indicates the procedure can be flown using the GPS receiver. Some procedures do not have this designation, meaning the GPS receiver may be used for supplemental navigation guidance only. ILS approaches, for example, must be flown by tuning the external VLOC receiver to the proper frequency and following the CDI or HSI.

Airport Approach Page Options

The available options for the Airport Approach Page can be displayed by pressing the \textbf{MENU} Key (Figure 6-20):

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load into Active FPL?</td>
<td>Allows the pilot to load the selected approach into the active flight plan without activating it. This performs the same operation as selecting ‘Load?’ from the Procedures Page ‘Select Approach?’ option. See Section 5.1.</td>
</tr>
<tr>
<td>Load and Activate?</td>
<td>Allows the pilot to load the selected approach into the active flight plan and activate navigation guidance to the approach transition (Section 5.1).</td>
</tr>
</tbody>
</table>

Table 6-2

Loading an approach from the Airport Approach Page:

1) Select the desired approach and transition using the steps outlined in Section 5.1 (Figure 6-19).

![Figure 6-19 Airport Approach Page](image)

2) Press the \textbf{MENU} Key to display the Airport Approach Page Menu.

3) Turn the large \textbf{right} knob to highlight ‘Load into Active FPL?’ and press the \textbf{ENT} Key (Figure 6-20).

![Figure 6-20 Airport Approach Page Menu](image)

4) The Active Flight Plan Page appears. Press the \textbf{FPL} Key to return to the Airport Procedures Page.

To load and activate an approach from the Airport Approach Page, follow the steps above, but select ‘Load and Activate?’ in step 3.
6.6 AIRPORT ARRIVAL PAGE

The Airport Arrival Page (Figure 6-21) shows the available Airport Standard Terminal Arrival (STAR) procedures for the selected airport. Where multiple transitions or runways are associated with the arrival procedure, that information may also be displayed. A map image provides a layout diagram for each arrival, transition, and runway.

Scrolling through the available arrivals:

1) Press the small right knob to activate the cursor.
2) Turn the large right knob to place the cursor on the arrival (ARVL) procedure name field (Figure 6-21).
3) Turn the small right knob to display a window of available arrivals for the selected airport (Figure 6-22). Continue turning the small right knob to select the desired arrival.

Figure 6-21 Airport Arrival Page

4) Press the ENT Key. The cursor moves to the transitions (TRANS) field.
5) Turn the small right knob to display a window of available transitions (Figure 6-23). Continue turning the small right knob to select the desired transition.

Figure 6-22 Arrivals Window

Figure 6-23 Transitions Window

6) Press the ENT Key. The cursor moves to the runway field.
7) Turn the small **right** knob to display a window of available runways (Figure 6-24). Continue turning the small **right** knob to select the desired runway. ‘ALL’ may appear in the runway field, indicating the arrival procedure applies to all runways. For airports with parallel runways, ‘B’ may appear at the end of the runway designation to indicate the arrival procedure applies to both runways.

8) Press the **ENT** Key. To remove the flashing cursor, press the small **right** knob.

Airport Arrival Page Options

The following option is available for the Airport Arrival Page, by pressing the **MENU** Key:

‘Load into Active FPL?’ allows the pilot to load the selected arrival into the active flight plan. This is identical to loading an arrival procedure from the Procedures Page, as described in Section 5.1.

Loading an arrival procedure from the Airport Arrival Page:

1) Select the desired arrival, transition, and runway using the steps above.

2) Press the **MENU** Key to display the Airport Arrival Page Menu.

3) Press the **ENT** Key to select the ‘Load into Active FPL?’ option (Figure 6-25).

4) The Active Flight Plan Page appears. Press the **FPL** Key to return to the Airport Arrival Page.
6.7 AIRPORT DEPARTURE PAGE

The Airport Departure Page (Figure 6-26) shows the available Airport Standard Instrument Departure (SID) procedures for the selected airport. Where multiple runways or transitions are associated with the departure procedure, that information may also be displayed. A map image provides a layout diagram for each departure, runway, and transition.

Figure 6-26 Airport Departure Page

Scrolling through the available departures:

1) Press the small right knob to activate the cursor.

2) Turn the large right knob to place the cursor on the departure (DEP) procedure name field (Figure 6-26).

3) Turn the small right knob to display a window of available departures for the selected airport (Figure 6-27). Continue turning the small right knob to select the desired departure.

4) Press the ENT Key. The cursor moves to the runway field.

5) Turn the small right knob to display a window of available runways (Figure 6-28). Continue turning the small right knob to select the desired runway. ‘ALL’ may appear in the runway field, indicating the departure procedure applies to all runways. For airports with parallel runways, ‘B’ may appear at the end of the runway designation to indicate the departure procedure applies to both runways.

6) Press the ENT Key. The cursor moves to the transitions (TRANS) field.

7) Turn the small right knob to display a window of available transitions. Continue turning the small right knob to select the desired transition.

8) Press the ENT Key. To remove the flashing cursor, press the small right knob.
Airport Departure Page Options

The following option is available for the Airport Departure Page, by pressing the **MENU** Key:

Load into Active FPL? allows the pilot to load the selected departure into the active flight plan. This is identical to loading a departure procedure from the Procedures Page, as described in Section 5.1.

Loading a departure procedure from the Airport Departure Page:

1) Select the desired departure, runway, and transition using the steps above.
2) Press the **MENU** Key to display the Airport Departure Page Menu.
3) Press the **ENT** Key to select the ‘Load into Active FPL?’ option (Figure 6-29).
4) The Active Flight Plan Page appears. Press the **FPL** Key to return to the Airport Departure Page.

6.8 INTERSECTION PAGE

The Intersection Page (Figure 6-30) displays the latitude, longitude, region, and country for the selected intersection. The Intersection Page also displays the identifier, radial, and distance from the nearest VOR, VORTAC, or VOR/DME.

Figure 6-30 Intersection Page

The following descriptions and abbreviations are used:

- Position - Latitude/Longitude (degrees/minutes or degrees/minutes/seconds), MGRS, or UTM/UPS
- RAD - Radial from nearest VOR in degrees magnetic or degrees true (depending upon unit configuration)
- DIS - Distance from nearest VOR, in nautical miles/statute miles/kilometers (depending upon unit configuration)

NOTE: The VOR displayed on the Intersection Page is the nearest VOR, not necessarily the VOR used to define the intersection.

Intersections may only be selected by identifier, as described in Section 6.1.
6.9 NDB PAGE

The NDB Page displays the facility name, city, region/country, latitude, and longitude for the selected NDB (Figure 6-31). The NDB Page also displays the frequency and a weather broadcast indication (if applicable). As mentioned in Section 6.1, NDBs may be selected by identifier, facility name, or location (city).

![Figure 6-31 NDB Page](image)

The following descriptions and abbreviations are used:

- **Symbol** - See Section 2.4 for a graphic illustration of available NDB symbols
- **Position** - Latitude/Longitude (degrees/minutes or degrees/minutes/seconds), MGRS, or UTM/UPS
- **FREQ** - Frequency in kilohertz (kHz)
- **Wx Brdcst** - Weather information is broadcast on the selected facility’s frequency

6.10 VOR PAGE

The VOR Page (Figure 6-32) displays the facility name, city, region/country, magnetic variation, latitude, and longitude for the selected VOR. The VOR Page also displays the frequency and a weather broadcast indication (if applicable).

![Figure 6-32 VOR Page](image)

The following descriptions and abbreviations are used:

- **Symbol** - See Section 2.4 for a graphic illustration of available VOR symbols
- **VAR** - Magnetic variation in degrees
- **Position** - Latitude/Longitude (degrees/minutes or degrees/minutes/seconds), MGRS, or UTM/UPS
- **FREQ** - Frequency in megahertz (MHz)
- **Wx Brdcst** - Weather information is broadcast on the selected facility’s frequency

As mentioned in Section 6.1, VORs may be selected by identifier, facility name, or location (city). The VOR frequency is provided for reference only to help quickly tune the external VLOC receiver to the selected VOR’s frequency.
6.11 USER WAYPOINT PAGE

In addition to the airport, VOR, NDB, and intersection information contained in the Jeppesen NavData Card, the GPS 400 allows the pilot to store up to 1,000 user-defined waypoints. The User Waypoint Page (Figure 6-33) displays the waypoint name (up to five characters long), identifier, radial from two reference waypoints, and distance from one reference waypoint, along with the user waypoint’s latitude/longitude position.

The following descriptions and abbreviations appear on the User Waypoint Page:

- REF WPT - Reference waypoint identifier (name)
- RAD - Radial from reference waypoint, in degrees magnetic or degrees true (depending upon unit configuration)
- DIS - Distance from reference waypoint, in nautical miles/statute miles/kilometers (depending upon unit configuration)
- Position - Latitude/Longitude (degrees/minutes or degrees/minutes/seconds), MGRS, or UTM/UPS

User waypoints may only be selected by name (identifier), as described in Section 6.1.

Creating User Waypoints

User waypoints may be created from the User Waypoint Page or the Map Page. To create a new user waypoint, simply enter its name (identifier) and position, or reference another waypoint by radial and distance.

Creating a new user waypoint by entering its latitude/longitude position:

1) With the User Waypoint Page displayed, press the small right knob to activate the cursor.
2) Use the small and large right knobs to enter a name for the new waypoint (Figure 6-34) and press the ENT Key. The present position appears in the position field at the bottom of the page (Figure 6-35). To create a waypoint at the present position, turn the large right knob to highlight ‘Create?’ and skip to step 6.
3) Turn the large **right** knob to highlight the position field at the bottom of the page.

4) Use the small and large **right** knobs to enter the position coordinates for the new waypoint (Figure 6-36).

![Figure 6-36 Present Position Field Selected](image)

5) Press the **ENT** Key to accept the selected position.

6) The cursor moves to ‘Create?’. Press the **ENT** Key to add the new waypoint to memory.

7) Press the small **right** knob to remove the flashing cursor.

Creating a new user waypoint by referencing an existing waypoint:

1) With the User Waypoint Page displayed, press the small **right** knob to activate the cursor.

2) Use the small and large **right** knobs to enter a name for the new waypoint and press the **ENT** Key.

3) Turn the large **right** knob to highlight the first reference waypoint (REF WPT) field.

4) Use the small and large **right** knobs to enter the identifier of the reference waypoint. The reference waypoint can be an airport, VOR, NDB, intersection, or another user waypoint. Press the **ENT** Key to accept the selected identifier.

5) The cursor moves to the radial (RAD) field (Figure 6-37). Use the small and large **right** knobs to enter the radial from the reference waypoint to the new user waypoint. Press the **ENT** Key to accept the selected radial.

![Figure 6-37 Radial Field Highlighted](image)

6) The cursor moves to the distance (DIS) field. Use the small and large **right** knobs to enter the distance from the reference waypoint to the new user waypoint. Press the **ENT** Key to accept the selected distance.
7) Turn the large right knob to highlight ‘Create?’ (Figure 6-38) and press the ENT Key.

8) Press the small right knob to remove the flashing cursor.

Creating Reference Waypoints

The GPS 400 allows the pilot to create a new user waypoint at a defined radial and distance from the present position. To reference the present position, follow the preceding steps, but press the CLR Key in Step 4. ‘P.POS’ appears in the reference waypoint (REF WPT) field to indicate that radial and distance information references the present position. The second reference waypoint field (REF WPT) is a temporary reference only, not a reference that is stored with the user waypoint. By default, this field displays a radial from the nearest VOR. However, the pilot can select any waypoint by identifier to use as a reference in this field.

The GPS 400 can store user-defined waypoints which are generated from other equipment in the panel. For example, an EFIS equipped with joystick inputs can be used to create user waypoints which (if the installation supports this) automatically transfer to the GPS 400.

Creating User Waypoints from the Map Page

The Map Page and panning target pointer (Section 2.4, Map Panning) provide a quick means of saving the present position as a user-defined waypoint.

Capturing and saving the present position as a user waypoint:

1) With the Map Page displayed, press the small right knob to activate the panning function. The target pointer appears at the present position (Figure 6-39).

2) Press the ENT Key to capture the position and display the User Waypoint Page (Figure 6-40).
3) A four-digit name is automatically assigned to the waypoint. To change this name, turn the large right knob to highlight the name field, then use the small and large right knobs to select a new name. Press the ENT Key to accept the selected name.

4) The cursor moves to the ‘Create?’ action field. Press the ENT Key to save the new waypoint.

Modifying User Waypoints

To modify an existing waypoint, select that waypoint on the User Waypoint Page and enter the new position information directly over the old information.

Modifying a user waypoint by changing its latitude/longitude position:

1) With the User Waypoint Page displayed, press the small right knob to activate the cursor.

2) Use the small and large right knobs to enter the name of the desired waypoint and press the ENT Key.

3) Turn the large right knob to highlight the position field at the bottom of the page.

4) Use the small and large right knobs to enter the new position coordinates (Figure 6-41) and press the ENT Key to accept the selected position.

![Figure 6-41 Position Field Selected](image)

5) The cursor moves to the ‘Modify?’ action field. Press the ENT Key to modify the waypoint.

6) Press the small right knob to remove the flashing cursor.
Modifying a user waypoint by changing reference waypoint information:

1) With the User Waypoint Page displayed, press the small right knob to activate the cursor.

2) Use the small and large right knobs to enter the name of the desired waypoint and press the ENT Key.

3) Turn the large right knob to highlight the first reference waypoint (REF WPT) field, to change the reference waypoint. Otherwise, continue turning the large right knob to highlight the radial (RAD) or distance (DIS) field, as desired.

4) Use the small and large right knobs to change the identifier, if desired, of the reference waypoint (Figure 6-42). The reference waypoint can be an airport, VOR, NDB, intersection, or another user waypoint. Press the ENT Key to accept the selected identifier.

5) The cursor moves to the radial (RAD) field (Figure 6-43). Use the small and large right knobs to change the radial from the reference waypoint, if desired. Press the ENT Key to accept the selected radial.

6) The cursor moves to the distance (DIS) field (Figure 6-44). Use the small and large right knobs to change the distance from the reference waypoint to the new user waypoint, if desired. Press the ENT Key to accept the selected distance.

7) The cursor moves to the ‘Modify?’ action field. Press the ENT Key to modify the waypoint.

8) Press the small right knob to remove the flashing cursor.

NOTE: Attempting to modify or delete a waypoint which is currently a direct-to waypoint or the current ‘from’ or ‘to’ waypoint in the active flight plan, the GPS 400 alerts the pilot with the ‘Can’t change an active waypoint’ or ‘Waypoint is active and can’t be deleted’ message. First cancel the direct-to or remove the waypoint(s) from the active flight plan before modifying or deleting the waypoint(s).
User Waypoint Page Options

The following User Waypoint Page options are available by pressing the **MENU** Key:

‘View User Waypoint List?’ displays a list of all user waypoints currently stored in memory.

Viewing a list of all user waypoints:

1) From the User Waypoint Page, press the **MENU** Key to display the User Waypoint Page Menu.

2) Turn the large **right** knob to highlight ‘View User Waypoint List?’ (Figure 6-45) and press the **ENT** Key.

3) The top of the User Waypoint List indicates the total number of user waypoints currently used and available memory (Figure 6-46). If more user waypoints are stored than can be displayed on a single screen, turn the large **right** knob to scroll through the User Waypoint List.

4) Press the small **right** knob to return to the User Waypoint Page.

‘Delete User Waypoint?’ allows the pilot to delete the selected waypoint from memory.

Deleting a user waypoint:

1) Select the desired waypoint on the User Waypoint Page and press the **MENU** Key to display the User Waypoint Page Menu.

2) Turn the large right knob to highlight ‘Delete User Waypoint?’ (Figure 6-47) and press the **ENT** Key.

3) ‘Crossfill?’ allows the pilot to transfer a user waypoint to another 400/500-series unit (if installed). Please refer to Sections 4.1 and 8.1 for detailed information on crossfill.
User Waypoint List

The User Waypoint List (Figure 6-48) allows the pilot to review, modify, rename, or delete a selected user waypoint, or to delete all user waypoints currently stored in memory. The top of the page shows the number of waypoints used and available memory.

![User Waypoint List Page](image)

Figure 6-48 User Waypoint List Page

Reviewing and/or modifying a user waypoint from the User Waypoint List:

1) Select the User Waypoint List, as described in this section.

2) Turn the large **right** knob to highlight the desired user waypoint (Figure 6-48).

3) Press the **ENT** Key to display the User Waypoint Page for the selected waypoint. From this page the pilot may review all information defining the waypoint and its position.

4) To modify the waypoint’s position or reference waypoint information, follow the steps described in this section.

5) To exit the User Waypoint Page, turn the large **right** knob to highlight ‘Done?’ and press the **ENT** Key.

Renaming a user waypoint from the User Waypoint List:

1) Select the User Waypoint List, as described in this section.

2) Turn the large **right** knob to highlight the desired user waypoint.

3) Use the small and large **right** knobs to change the name of the user waypoint (Figure 6-49). Enter the new name directly over the old name. Press the **ENT** Key to accept the new name.

![User Waypoint Name Selected](image)

Figure 6-49 User Waypoint Name Selected

4) A ‘rename waypoint’ confirmation window is displayed (Figure 6-50). With ‘Yes?’ highlighted, press the **ENT** Key to rename the selected user waypoint.

![Rename Waypoint Window](image)

Figure 6-50 Rename Waypoint Window
Deleting a user waypoint from the User Waypoint List:
1) Select the User Waypoint List, as described in this section.
2) Turn the large right knob to highlight the desired user waypoint.
3) Press the CLR Key to display a ‘delete waypoint’ confirmation window (Figure 6-51).

![Figure 6-51 Delete Waypoint Window](image)

4) With ‘Yes?’ highlighted, press the ENT Key to delete the selected user waypoint.

Deleting all user waypoints from memory:
1) Select the User Waypoint List, as described in this section.
2) Press the MENU Key to display a menu for the User Waypoint List (Figure 6-52).

![Figure 6-52 User Waypoint List Page Menu](image)

3) With ‘Delete All User Waypoints’ highlighted, press the ENT Key.
4) A ‘delete all waypoints’ confirmation window is displayed (Figure 6-53). With ‘Yes?’ highlighted, press the ENT Key to delete all user waypoints from memory.

![Figure 6-53 Delete All Waypoints Window](image)
SECTION 7: NRST PAGES

7.1 NRST PAGE GROUP

Section 2.1 introduced the GPS 400’s main page groups (Table 7-1)—NAV, WPT, AUX, NRST—and described each page in the NAV group. This fourth page group (NRST) provides detailed information for the nine nearest airports, VORs, NDBs, intersections, and user waypoints within 200 nm of the current position. In addition, the NRST pages (Figure 7-1) include the five nearest Flight Service Station (FSS) and center (ARTCC/FIR) points of communication, plus alerts the pilot to any nearby Special Use (SUA) or Controlled Airspaces.

Quickly selecting a NRST page:
1) From any page, press the NRST Key, ‘NRST’ appears in the lower right corner of the screen (see Figure 7-2).

2) Turn the small right knob to select the desired NRST page.
Not all nine nearest airports, VORs, NDBs, intersections, or user waypoints can be displayed on the corresponding NRST page at one time. The Nearest Airport Page displays detailed information for three nearest airports, with a scroll bar along the right-hand side of the page indicating which part of the list is currently being viewed. The Nearest Airspace Page displays detailed information for up to three special use or controlled airspace alerts. The NRST pages for VORs, NDBs, intersections, and user waypoints displays five waypoints at a time. The flashing cursor and large right knob are used to scroll and view the rest of the waypoints or airspaces in the list.

Scrolling through the list of nearest airports, VORs, NDBs, intersections, user waypoints, or SUAs:

1) Select the desired NRST page, using the steps outlined on the preceding page.
2) Press the small right knob to activate the cursor.
3) Turn the large right knob to scroll through the list. The scroll bar along the right-hand side of the page indicates which part of the list is currently being viewed (Figure 7-3).
4) Press the small right knob to remove the flashing cursor.

The Nearest ARTCC Page and the Nearest FSS Page present detailed information for up to five nearby facilities, displaying only one facility at a time. Again, the additional information is viewed using the flashing cursor and large right knob to scroll through the list.

Scrolling through the list of nearest flight service station or center points of communication:

1) Select the desired NRST page, using the steps outlined on the preceding page.
2) Press the small right knob to activate the cursor.
3) Turn the small right knob to scroll through the list (Figure 7-4).
4) Press the small right knob to remove the flashing cursor.
Navigating to a Nearby Waypoint

The NRST pages can be used in conjunction with the GPS 400's direct-to function to quickly set a course to a nearby facility, and can provide navigation to the nearest airport in case of an in-flight emergency.

Selecting a nearby airport, VOR, NDB, intersection, or user waypoint as a direct-to destination:

1) Use the flashing cursor to scroll through a NRST page list (Figure 7-5) and highlight the desired nearest waypoint, as outlined in Section 7.1.

2) Press the Direct-to Key to display the select Direct-to Waypoint Page (Figure 7-6).

3) Press the ENT Key to accept the selected waypoint’s identifier and press the ENT Key a second time (Figure 7-7) with ‘Activate?’ highlighted to begin navigating to the selected waypoint.
7.2 NEAREST AIRPORT PAGE

The Nearest Airport Page displays the identifier, symbol, bearing, and distance to the nine nearest airports (within 200 nm of the present position). For each airport listed, the Nearest Airport Page also indicates the best available approach, common traffic advisory frequency (CTAF), and the length of the longest runway (Figure 7-8).

The Nearest Airport Page can be configured to exclude shorter runways or undesirable runway surface types, so that the corresponding airports do not appear on the list. The pilot may wish to use this feature to exclude seaplane bases or runway lengths which would be difficult or impossible to land upon. See Section 8.5, Setup 2 Page: Nearest Airport Criteria for additional details.

Additional communication frequencies, runway information, and more are available from the Nearest Airport Page by highlighting the identifier of the desired airport and pressing the ENT Key.

Viewing additional information for a nearby airport:

1) Select the Nearest Airport Page, using the steps outlined in Section 7.1.

2) Press the small right knob to activate the cursor.

3) Turn the large right knob to scroll through the list, highlighting the identifier of the desired airport (Figure 7-9).

4) Press the ENT Key to display the Airport Location Page for the selected airport (Figure 7-10).
5) To view additional WPT pages for the selected airport (including the Airport Runway Page and the Airport Frequency Page) press the small right knob to remove the flashing cursor. Turn the small right knob to display the additional WPT pages (Figure 7-11). When finished, press the small right knob to return the flashing cursor to the screen.

![Figure 7-11 Additional WPT Page](image)

6) To return to the Nearest Airport Page, verify that ‘Done?’ is highlighted by the flashing cursor and press the ENT Key (or press the CLR Key).

7.3 NEAREST INTERSECTION PAGE

The Nearest Intersection Page (Figure 7-12) displays the identifier, symbol, bearing, and distance to the nine nearest intersections (within 200 nm of the present position).

To view additional information for a nearby intersection, start from the Nearest Intersection Page and follow the preceding steps 2 through 4.

![Figure 7-12 Nearest Intersection Page](image)

7.4 NEAREST NDB PAGE

The Nearest NDB Page (Figure 7-13) displays the identifier, symbol, bearing, distance, and frequency to the nine nearest NDBs (within 200 nm of the present position).

To view additional information for a nearby NDB, start from the nearest NDB Page and follow the preceding steps 2 through 4.

![Figure 7-13 Nearest NDB Page]

7.5 NEAREST VOR PAGE

The Nearest VOR Page (Figure 7-14) displays the identifier, symbol, bearing, and distance to the nine nearest VORs (within 200 nm of the present position). For each VOR listed, the nearest VOR Page also indicates the frequency of the nearby VOR for reference in tuning a VOR receiver.

![Figure 7-14 Nearest VOR Page]

Viewing additional information for a nearby VOR:

1) Select the Nearest VOR Page, using the steps outlined in Section 7.1.

2) Press the small **right** knob to activate the cursor.

3) Turn the large **right** knob to scroll through the list, highlighting the identifier of the desired VOR (Figure 7-15).
7.6 NEAREST USER WAYPOINT PAGE

The Nearest User Waypoint Page (Figure 7-16) displays the name, bearing, and distance to the nine nearest user waypoints (within 200 nm of the present position).

<table>
<thead>
<tr>
<th>Waypoint Identifier and Symbol</th>
<th>Bearing To and Distance To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Page Group</td>
<td>Number of Pages in Current Page Group</td>
</tr>
</tbody>
</table>

Figure 7-15 Nearest VOR Page

4) Press the **ENT** Key to display the VOR Page for the selected VOR.

5) To return to the Nearest VOR Page, verify that ‘Done?’ is highlighted by the flashing cursor and press the **ENT** Key (or press the **CLR** Key).

6) Press the small **right** knob to remove the flashing cursor.
7.7 NEAREST CENTER (ARTCC) PAGE

The Nearest Center Page (Figure 7-17) displays the facility name, bearing to, and distance to the five nearest ARTCC points of communication (within 200 nm of the present position). For each ARTCC listed, the Nearest Center Page also indicates one or more frequencies.

Figure 7-17 Nearest ARTCC Page

7.8 NEAREST FLIGHT SERVICE STATION (FSS) PAGE

The Nearest Flight Service Station Page (Figure 7-18) displays the facility name, bearing to, and distance to the five nearest FSS points of communication (within 200 nm of the present position). For each FSS listed, the Nearest Flight Service Station Page also indicates one or more frequencies.

For duplex operations, ‘RX’ and ‘TX’ indications appears beside the listed frequencies, indicating ‘receive only’ or ‘transmit only’ frequencies. The associated VOR is also provided for reference.

Figure 7-18 Nearest FSS Page
7.9 NEAREST AIRSPACE PAGE

The last page in the NRST group, the Nearest Airspace Page (Figure 7-21) alerts the pilot to as many as nine controlled or special use airspaces near or in the flight path. Alerts are provided according to the following conditions:

- If the projected course will take the aircraft inside an airspace within the next ten minutes, the alert message ‘Airspace ahead -- less than 10 minutes’ appears (Figure 7-19). The Nearest Airspace Page shows the airspace as ‘Ahead’.

- If the aircraft is within two nautical miles of an airspace and the current course will take the aircraft inside, the message ‘Airspace near and ahead’ appears (Figure 7-19). The Nearest Airspace Page shows ‘Within 2nm of airspace’.

- If the aircraft has entered an airspace, the message ‘Inside Airspace’ appears (Figure 7-20). The Nearest Airspace Page shows ‘Inside of airspace’.

- If the aircraft is within two nautical miles of an airspace and the current course will not take the aircraft inside, the message ‘Near airspace less than 2nm’ appears. The Nearest Airspace Page shows the airspace as ‘Ahead < 2nm’.

Note that the airspace alerts are based on three-dimensional data (latitude, longitude, and altitude) to avoid nuisance alerts. The alert boundaries for controlled airspace are also sectorized to provide complete information on any nearby airspace. Once one of the described conditions exists, the message annunciator flashes, alerting the pilot of an airspace message.

Viewing an airspace alert message:
1) When the message annunciator above the MSG Key flashes, press the MSG Key.
2) Press the MSG Key again to return to the previous page.
Once an airspace alert message appears, detailed information concerning the specific airspace is provided on the Nearest Airspace Page (Figure 7-21). The Nearest Airspace Page displays the airspace name, status (‘Ahead’, ‘Ahead < 2nm’, etc., as described on the preceding page), and a time to entry (if applicable). By selecting any airspace name listed on the Nearest Airspace Page, additional details are provided—including controlling agency, communication frequencies, and floor/ceiling limits.

Figure 7-21 Nearest Airspace Page

Viewing additional details for an airspace listed on the Nearest Airspace Page:

1) Select the Nearest Airspace Page, using the steps outlined in Section 7.1 (Figure 7-22).

2) Press the small **right** knob to activate the cursor.

3) Turn the large **right** knob to scroll through the list, highlighting the desired airspace (Figure 7-23).

4) Press the **ENT** Key to display the Airspace Page for the selected nearby airspace (Figure 7-24).

5) To return to the Nearest Airspace Page, verify that ‘Done?’ is highlighted by the flashing cursor and press the **ENT** Key.

6) Press the small **right** knob to remove the flashing cursor.
The Airspace Page displays (and airspace alert messages are provided for) the following airspace types (Figures 7-25, 7-26, and 7-27):

- Alert
- Class B
- Class D
- Danger
- Prohibited
- TMA
- TRSA
- Warning

- Caution
- Class C
- CTA
- MOA
- Restricted
- Training
- Unspecified

The bottom right-hand corner of the Airspace Page displays the floor and ceiling limits of the airspace. The following are examples of what may appear as vertical limits for an airspace:

- 5000 ft msl (5000 feet mean sea level)
- 5000 ft agl (5000 feet above ground level)
- MSL (at mean sea level)
- Notam (Notice to Airmen)
- Unknown
- See Chart
- Unlimited
- Surface

All airspace alert messages, except for prohibited areas, may be turned on or off from the Airspace Alarms Page. An altitude buffer is also provided on the Airspace Alarms Page to provide an extra margin of safety above/below the published limits (Section 8.4, Setup 1 Page: Airspace Alarms for additional details).
SECTION 8: AUX PAGES

8.1 AUX PAGE GROUP

Section 2.1 introduced the GPS 400’s main page groups (Table 8-1)—NAV, WPT, AUX, NRST—and described each page in the NAV group. The third page group (AUX) allows the pilot to change unit settings. The AUX pages (Figure 8-1) also provide trip planning, fuel planning, density altitude, true airspeed, and winds aloft calculations.

<table>
<thead>
<tr>
<th>Page Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAV Group</td>
</tr>
<tr>
<td>see Section 2</td>
</tr>
</tbody>
</table>

Table 8-1 Page Groups

- Flight Planning
- Utility
- Setup 1
- Setup 2

Figure 8-1 AUX Pages

NOTE: The AUX Page Group may have five AUX pages available when the GPS 400 installation includes connection to a weather information source. See Section 10 of this manual for more information.

Quickly selecting an AUX page:

1) From any page, press and hold the CLR Key to select the Default NAV Page (Figure 8-2). If any of the main pages are already displayed, this step may be skipped.

Figure 8-2 Default NAV Page

2) Turn the large right knob to select the AUX Page Group (Figure 8-3). ‘AUX’ appears in the lower right corner of the screen.

Figure 8-3 Flight Planning Page

3) Turn the small right knob to select the desired AUX page.
8.2 FLIGHT PLANNING PAGE

The Flight Planning Page (Figure 8-4) provides access (via menu options) to fuel planning, trip planning, density altitude/true airspeed/winds aloft calculations, and a ‘Crossfill’ function to transfer flight plans/user waypoints to a second GPS 400. When a menu option is selected, the corresponding page appears providing additional information and features.

Selecting a menu option from the Flight Planning Page:

1) Press the small right knob momentarily, to activate the flashing cursor (Figure 8-4).

2) Turn the large right knob to select the desired menu option (Figure 8-5).

3) Press the ENT Key (Figure 8-6).
The Flight Planning Page Options are listed in Table 8-2.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Planning</td>
<td>When equipped with fuel flow (FF) and/or fuel on board (FOB) sensors, this option displays current fuel conditions along the active direct-to or flight plan. The pilot may also manually enter fuel flow, ground speed (GS) and (in some instances) fuel on board figures for planning purposes. Fuel planning figures can be displayed not only for the currently active flight plan or direct-to, but also point-to-point between two specified waypoints and for any programmed flight plan.</td>
</tr>
<tr>
<td>Trip Planning</td>
<td>Allows the pilot to view desired track (DTK), distance (DIS), estimated time enroute (ETE), enroute safe altitude (ESA), and estimated time of arrival (ETA) information for a direct-to, point-to-point between two specified waypoints, or for any programmed flight plan.</td>
</tr>
<tr>
<td>Density Alt/TAS/Winds</td>
<td>Indicates the theoretical altitude at which the aircraft can perform depending upon several environmental conditions, including indicated altitude (IND ALT), barometric pressure (BARO), and total air temperature (TAT; the temperature, including the heating effect of speed, read on a standard outside temperature gauge). This menu option computes true airspeed (TAS), based upon the factors above and the calibrated airspeed (CAS). Also, this menu option determines winds aloft (the wind direction and speed) and a head wind/tail wind component, based upon the calculated density altitude (DEN ALT), true airspeed, aircraft heading (HDG), and ground speed.</td>
</tr>
<tr>
<td>Crossfill</td>
<td>Allows the pilot to transfer the active flight plan, any stored flight plan, a user waypoint, or all user waypoints between two 400/500-series Garmin units in a dual-unit installation. See Section 4.1, Flight Plan Catalog Options and information following in this section for details.</td>
</tr>
<tr>
<td>Scheduler</td>
<td>Displays reminder messages (such as ‘Change oil’, ‘Switch fuel tanks’, ‘Overhaul’, etc.). One-time, periodic, and event-based messages are allowed. One-time messages appear once the timer expires and reappear each time the GPS 400 is powered on, until the message is deleted. Periodic messages automatically reset to the original timer value, once the message is displayed. Event-based messages do not use a timer, but rather a specific date and time.</td>
</tr>
</tbody>
</table>

NOTE: Point-to-point waypoints, flight plans, and/or ground speed (default is current GPS-calculated ground speed) entered on the Fuel Planning Page automatically transfers to the Trip Planning Page, and vice versa.
Flight Planning Page: Fuel Planning

Performing fuel planning operations:

1) Select ‘Fuel Planning’ from the Flight Planning Page, using the steps described in Section 8.2.

2) The current fuel planning ‘mode’ is displayed at the top of the page (Figure 8-7): ‘POINT TO POINT’ or ‘FPL’ (for a flight plan). To change the mode, press the **MENU** Key to display the Fuel Planning Page Menu (Figure 8-8) for the other mode, then press the **ENT** Key to accept the other mode.

![Figure 8-7 Fuel Planning Page](image)

3) For point-to-point fuel planning (Figure 8-9), turn the small and large **right** knobs to enter the identifier of the ‘from’ waypoint. Once the waypoint’s identifier is entered, press the **ENT** Key to accept the waypoint. The flashing cursor moves to the ‘to’ waypoint. Again, turn the small and large **right** knobs to enter the identifier of the ‘to’ waypoint and press the **ENT** Key to accept the waypoint. **OR,**

![Figure 8-9 Fuel Planning Page, Point-to-Point](image)

4) For flight plan fuel planning (Figure 8-10), turn the small **right** knob to select the desired flight plan by number (already stored in memory; 00 is the active flight plan). Turn the large **right** knob to highlight the ‘LEG’ field and turn the small **right** knob to select the desired leg of the flight plan, or select ‘Cum’ to apply fuel planning calculations to the entire flight plan.

![Figure 8-10 Fuel Planning Page Flight Plan](image)

NOTE: The ‘Change Fields?’ option above is only available on GPS 400 installations which include a Shadin fuel computer. In these installations, use the ‘Change Fields?’ option to review separate fuel information for left and right engines.
5) If the fuel management system does not enter the data automatically, turn the large right knob to highlight the fuel on board (FOB) field (Figure 8-11).

![Figure 8-11 FOB Highlighted](image1)

6) Use the small and large right knobs to enter the amount of fuel on board. Press the ENT Key when finished.

7) The flashing cursor moves to the fuel flow (FF) field. Use the small and large right knobs to enter the fuel flow rate. Press the ENT Key when finished. Note that if a fuel system is providing current fuel flow, the fuel flow field defaults to this value.

8) The flashing cursor moves to the ground speed (GS) field. Use the small and large right knobs to enter the ground speed. Press the ENT Key when finished.

9) With all variables entered, the following information is provided (see also Figure 8-12):
 - REQ - Quantity of fuel required
 - LFOB - Left-over fuel on board
 - LRES - Left-over fuel reserve time
 - EFF - Efficiency, expressed in distance per fuel units (e.g., nautical miles per gallon)
 - RNG - Range (distance)
 - ENDUR - Flight endurance, or total available flight time

 ![Figure 8-12 REQ Highlighted](image2)

10) To reconfigure the data fields press the MENU Key to display the options window (Figure 8-13). Turn the small right knob to highlight the ‘change fields?’ option. Press the ENT Key to reconfigure the data fields. Turn the large right knob to select the desired field. Turn the small right knob to highlight the desired data. Press the ENT Key to select the data configuration.

 ![Figure 8-13 Select Field Type Window](image3)
Fuel planning figures can be entered and displayed based upon one of three possible configurations:

- No fuel sensors connected - In this instance fuel flow is manually entered and is used to calculate fuel on board. When fuel flow or fuel on board is manually entered, the figures are retained the next time the page is displayed (with fuel on board continuously recalculated).

- Fuel flow sensor installed, but no fuel on board sensor - Fuel on board is manually entered. Fuel flow is automatically provided by sensor. If fuel flow is manually entered (to override the sensor), it does not affect the FOB figure and is not retained the next time the page is displayed.

- Fuel flow and fuel on board sensors installed - Fuel flow and fuel on board are automatically provided by sensors. Fuel on board can NOT be entered manually. Fuel flow can be entered manually, but does not affect the FOB figure and is not retained the next time the page is displayed.

Flight Planning Page: Trip Planning

Performing trip planning operations:

1) Select ‘Trip Planning’ from the Flight Planning Page, using the steps described in this section.

2) The current trip planning ‘leg mode’ is displayed at the top of the page: ‘POINT TO POINT’ or ‘FPL LEG’ (for a flight plan leg). To change the leg mode, press the MENU Key to display the Flight Planning Page Menu for the other leg mode, then press the ENT Key to accept the other leg mode.

3) For point-to-point trip planning, turn the small and large right knobs to enter the identifier of the ‘from’ waypoint. Once the waypoint’s identifier is entered, press the ENT Key to accept the waypoint. The flashing cursor moves to the ‘to’ waypoint (Figure 8-14). Again, turn the small and large right knobs to enter the identifier of the ‘to’ waypoint and press the ENT Key to accept the waypoint. OR,

4) For ‘flight plan leg’ trip planning, turn the small right knob to select the desired flight plan (already stored in memory), by number. Turn the large right knob to highlight the ‘LEG’ field (Figure 8-15) and turn the small right knob to select the desired leg of the flight plan, or select ‘Cum’ to apply trip planning calculations to the entire flight plan.
5) Turn the large right knob to highlight the departure time (DEP TIME) field.

6) Use the small and large right knobs to enter the departure time. Press the ENT Key when finished. Departure time may be entered in local or UTC time, depending upon unit settings, see Section 8.4, Setup 1 Page: Date/Time.

7) The flashing cursor moves to the ground speed (GS) field. Use the small and large right knobs to enter the ground speed. Press the ENT Key when finished.

8) With all variables entered, the following information is provided (see also Figure 8-16):
 - DTK - Desired track, or desired course
 - DIS - Distance
 - ETE - Estimated time enroute
 - ESA - Enroute safe altitude
 - ETA - Estimated time of arrival

Flight Planning Page: Density Alt/TAS/Winds

Calculating density altitude, true airspeed, and winds aloft:

1) Select ‘Density Alt/TAS/Winds’ from the Flight Planning Page (Figure 8-17), using the steps described at the beginning of this section.

2) The flashing cursor highlights the indicated altitude (IND ALT) field. Use the small and large right knobs to enter the altitude indicated on the altimeter. Press the ENT Key when finished.

3) The flashing cursor moves to the calibrated airspeed (CAS) field (Figure 8-18). Use the small and large right knobs to enter the airspeed from the airspeed indicator. Press the ENT Key when finished.
4) The flashing cursor moves to the barometric pressure (BARO) field. Use the small and large right knobs to enter the barometric pressure (altimeter setting). Press the ENT Key when finished.

5) The flashing cursor moves to the total air temperature (TAT) field. Use the small and large right knobs to enter the temperature. Press the ENT Key when finished.

6) The flashing cursor moves to the aircraft heading (HDG) field. Use the small and large right knobs to enter the aircraft heading (Figure 8-19) from the directional gyro or compass. Press the ENT Key when finished.

7) With all variables entered, the following information is provided:

- DEN ALT - Density altitude
- TAS - True airspeed
- WIND - Wind direction and speed
- HEAD/TAIL WIND - Magnitude of head wind or tail wind component

NOTE: If the installation includes components (such as an airdata sensor) to provide any of the variables above, the Density Alt/TAS/Winds Page data defaults to the values provided by these components.

Flight Planning Page: Crossfill

Select ‘Crossfill?’ from the Flight Planning Page (Figure 8-20), the Default NAV Page (Figure 8-21), or Active Flight Plan Page (Figure 8-22) by pressing the MENU Key, and then scrolling down to ‘Crossfill’ and pressing the ENT Key.
• Automatic Operation: If both units are set to automatic, a change in the active flight plan of one unit is also seen in the other. Initiating a direct-to to a waypoint on one unit also initiates a direct-to to the same waypoint on the other unit. If one unit is set for automatic crossfill and the other is set for manual crossfill, then only the auto unit automatically sends data to the manual unit. In this configuration, the auto unit could be thought of as the master unit.

• Manual Operation: If manual operation is desired, the pilot must invoke all transfers from that unit. When a unit is configured for automatic transfer, a manual transfer can also be done on command. If either of the messages ‘data transfer error’ or ‘data transfer cancelled’ are received during an automatic or manual transfer, the pilot must force another transfer.

Transferring flight plans or user waypoints to/from a second 400/500-series unit:

1) Select ‘Crossfill’ from the Flight Planning Page, using the steps described at the beginning of this section.

2) The flashing cursor highlights the method field. Turn the small right knob to select ‘Auto’ or ‘Manual’ (Figure 8-23). ‘Auto’ automatically transfers any selection of (or any change to) a direct-to destination or active flight plan to a second 400/500-series Garmin unit.

3) The flashing cursor highlights the transfer data option (TRANSFER) field (Figure 8-24). Turn the small right knob to display a window of available data options (Figure 8-25).

NOTE: Crossfill requires both 400/500-series units to have the same Jeppesen NavData database cycle number.
• Active Flight Plan - Transfer the active flight plan to/from a second 400/500-series Garmin unit in a dual unit installation. This option is the default when selecting ‘Crossfill’ from the Active Flight Plan Page.

• Flight Plan - Transfer any stored flight plan to/from a second 400/500-series unit, by selecting the flight plan by number. This option is the default when selecting ‘Crossfill’ from the Flight Plan Catalog Page. See also Section 4.1, Flight Plan Catalog Page Options.

• User Waypoints (all) - Transfer all stored user waypoints to/from a second 400/500-series unit.

• User Waypoint - Transfer the specified user waypoint to a second 400/500-series unit.

4) Continue turning the small right knob to select the desired data option. Press the ENT Key when finished.

5) For a stored flight plan (‘Flight Plan’ data option), the flight plan number field is highlighted. Turn the small right knob to select the desired flight plan and press the ENT Key.

6) For a specified user waypoint (‘User Waypoint’ data option), the waypoint identifier field is highlighted. Use the small and large right knobs to enter the identifier of the desired user waypoint. Press the ENT Key when finished.

7) The flashing cursor moves to the ‘CROSS-SIDE’ field. Turn the small right knob to select ‘To’ or ‘From’ and press the ENT Key.

8) The flashing cursor moves to the ‘Initiate Transfer?’ confirmation field (Figure 8-26). Press the ENT Key to transfer the selected data.

Figure 8-26 ‘Initiate Transfer’ Highlighted

Flight Planning Page: Scheduler

Entering a scheduled message:

1) Select ‘Scheduler’ from the Flight Planning Page, using the steps described in this section.

2) The flashing cursor highlights the first message field. If necessary, turn the large right knob to highlight the first blank message field.

3) Use the small and large right knobs to enter the message text. Press the ENT Key when finished. (The GPS 400 stores up to nine scheduled messages holding 20 characters each.)
4) The flashing cursor moves to the type field under the new message (Figure 8-27). Turn the small **right** knob to display a window of available options (Figure 8-28): Event, One Time, Periodic. Press the **ENT** Key to select.

5) The flashing cursor moves to the time/date field. Use the small and large **right** knobs to set the time or date required before the message is displayed. Time is entered as hours/minutes/seconds (hhh:mm:ss). Event-based messages expire at a specific date and time. Press the **ENT** Key when finished.

Editing a scheduled message:

1) Select ‘Scheduler’ from the Flight Planning Page, using the steps described at the beginning of this section.

2) The flashing cursor highlights the first message field.

3) To edit the message text, turn the large **right** knob to highlight the desired message field. Use the small and large **right** knobs to edit the message text—entering the new text directly over the old message. Press the **ENT** Key when finished.

4) To edit the time field, turn the large **right** knob to highlight the field. Use the small and large **right** knobs to edit the new date or time—entering the new value directly over the old figure. Press the **ENT** Key when finished.

Deleting a scheduled message:

1) Select ‘Scheduler’ from the Flight Planning Page, using the steps described in this section.

2) The flashing cursor highlights the first message field. Turn the large **right** knob to highlight the desired message field.

3) Press the **CLR** Key to delete the message text, followed by the **ENT** Key to confirm the deletion.
8.3 UTILITY PAGE

The Utility Page (Figure 8-29) provides access (via menu options) to checklists, a count down/up timer, trip timers, trip statistics, RAIM (Receiver Autonomous Integrity Monitoring) prediction, sunrise/sunset time calculations, software versions, database versions, and terrain database version information. When a menu option is selected, the corresponding page appears providing additional information and features.

NOTE: Scroll down to view the last 3 items (Software Versions, Database Versions, and Terrain Database Versions) listed on the Utility Page.

Selecting a menu option from the Utility Page:

1) Press the small right knob momentarily, to activate the flashing cursor (Figure 8-29).

2) Turn the large right knob to select the desired menu option (Figure 8-30), and press the ENT Key (Figure 8-31).

The following menu options are available:

- Checklists - Provides up to nine different user-defined checklists containing up to 30 items each.
- Flight Timers - Provides count up/down timers, plus automatic recording of departure time and total trip time. Departure and total trip time recording can be configured to run either any time GPS 400 power is on, or only when ground speed exceeds 30 knots.
- Trip Statistics - Provides readouts for trip odometers, average speed, and maximum speed. These readouts are resettable (individually or all at once) by pressing the MENU Key to display the Trip Statistics Page Menu.
• RAIM Prediction - Predicts if GPS coverage is available for the current location or at a specified waypoint at any time and date. Receiver Autonomous Integrity Monitoring (RAIM) performs checks to ensure that the GPS 400 will have adequate satellite geometry during the flight. RAIM availability is near 100% in Oceanic, Enroute, and Terminal phases of flight. Because FAA TSO requirements for non-precision approaches specify significantly better satellite coverage than other flight phases, RAIM may not be available when flying some approaches. The GPS 400 automatically monitors RAIM during approach operations and warn the pilot if RAIM is not available. In such cases, use an external LOC receiver instead for many of the non-precision and precision approaches stored on the Jeppesen NavData Card. RAIM prediction helps the pilot plan for a pending flight to confirm GPS operation during an approach.

An ‘INTEG’ annunciation at the bottom left corner of the screen (Figure 8-32) indicates that satellite coverage is insufficient to pass built-in RAIM tests. When this occurs, the GPS receiver continues to provide navigation information, but should not be used for primary navigation guidance. Use an alternate navigation source.

If a ‘WARN’ annunciation appears at the bottom left corner, GPS satellite coverage may be sufficient, but the GPS 400 has detected a position error which exceeds protection limits. In this condition, all GPS navigation data on the GPS 400 is disabled. Use an alternate navigation source.

• Sunrise/Sunset - Allows the pilot to calculate the time of sunrise and sunset at any waypoint or the present position for a specified date.

• Software Versions - Provides software version information for the operating software within the GPS receiver and main processor board.

• Database Versions - Displays the current Jeppesen database type and expiration date, along with the version and type of built-in land database.

• Terrain Database Versions - Displays the current version and area of coverage of each terrain and obstacle database. If a database is found to be missing and/or deficient, the TERRAIN system fails the self-test and issues a failure message.

Figure 8-32 ‘INTEG’ Annunciation
Utility Page: Checklists

Creating a checklist:
1) Select ‘Checklist’ from the Utility Page (Figure 8-33), using the steps described at the beginning of this section (8.3). Press the ENT Key to display a list of checklists.

![Figure 8-33 Checklists Highlighted](image)

2) Press the MENU Key to display an options menu. Turn the large right knob to select ‘Create New Checklist?’ and press the ENT Key.

3) Use the small and large right knobs to enter the name of a checklist. Press the ENT Key when finished. (Up to nine different checklists can be created and stored in the GPS 400.)

4) Use the small and large right knobs to enter each checklist item, followed each time by the ENT Key. Each checklist may contain up to 30 line items of as much as 16 characters long.

Executing a checklist:
1) With the Checklists Page displayed (Figure 8-34), turn the large right knob to select the desired checklist and press the ENT Key.

![Figure 8-34 Desired Checklist Highlighted](image)

2) As each checklist item is completed, press the ENT Key to move to the next item on the list (Figure 8-35).

![Figure 8-35 Desired Checklist Item Highlighted](image)

Editing a checklist:
1) With the Checklists Page displayed, turn the large right knob to select the desired checklist and press the ENT Key.

2) Press the MENU Key to display an options menu. Select ‘Edit Item?’ and press the ENT Key, then use the small and large right knobs to edit each checklist item. Press the ENT Key when finished.
Inserting a checklist step into an existing checklist:
1) With the Checklists Page displayed, turn the large **right** knob to select the desired checklist and press the **ENT** Key.
2) Turn the large **right** knob to highlight the existing checklist entry which immediately follows the new checklist step.
3) Turn the small and large **right** knobs to enter the new checklist step. Press the **ENT** Key when finished.

Deleting a checklist or all checklists:
1) With the Checklists Page displayed, press the **MENU** Key to display an options menu.
2) Turn the large **right** knob to select ‘delete checklist’ or ‘delete all checklists’ and press the **ENT** Key to remove the checklist or all checklists from memory.

Copying a checklist:
1) With the Checklists Page displayed and the desired checklist selected, press the **MENU** Key.
2) Turn the large **right** knob to select ‘Copy Checklist?’ and press the **ENT** Key to copy the checklist to an empty checklist memory location.

Sorting the checklists by name or entry:
1) With the Checklists Page displayed, press the **MENU** Key to display an options menu.
2) Turn the large **right** knob to select ‘Sort List By Entry?’ or ‘Sort List By Name?’ and press the **ENT** Key.

Utility Page: Flight Timers

Viewing, using, or resetting the generic timer:
1) Select ‘Flight Timers’ from the Utility Page (Figure 8-36), using the steps described at the beginning of this section (8.3).

2) The flashing cursor highlights ‘Start?’. To start the generic timer, press the **ENT** Key. Count up timers typically begin with this step; however, for count down timers, to enter a count direction and time before starting the timer, see the following steps.

3) To change the count direction, turn the large **right** knob to highlight the count direction field (Figure 8-37): ‘Down’ or ‘Up’. Turn the small **right** knob to select the desired count direction. Press the **ENT** Key when finished.
4) For a count down timer, turn the large right knob to highlight the time field. Use the small and large right knobs to enter the count down time—in hours, minutes, and seconds. Press the ENT Key when finished.

5) To stop the generic timer, turn the large right knob to highlight ‘Stop?’ and press the ENT Key.

6) To reset the generic timer, turn the large right knob to highlight the time field. Press the CLR Key, followed by the ENT Key.

Recording or resetting the departure time:

1) Select ‘Flight Timers’ from the Utility Page, using the steps described at the beginning of this section (8.3).

2) Turn the large right knob to highlight the reset mode field, under ‘Departure Time’. The reset mode field indicates ‘Pwr-on’ or ‘GS>30kt’.

3) Turn the small right knob to select the desired reset mode (Figure 8-38). ‘Pwr-on’ records a departure time when the GPS 400 is turned on. ‘GS>30kt’ records a departure time once the GPS-computed ground speed exceeds 30 knots.

4) Press the ENT Key when finished.

5) To reset the departure time, turn the large right knob to highlight ‘Reset?’ and press the ENT Key.

Viewing, using, or resetting total trip time:

1) Select ‘Flight Timers’ from the Utility Page, using the steps described at the beginning of this section.

2) Turn the large right knob to highlight the reset mode field, under ‘Total Trip Time’. The reset mode field indicates ‘Pwr-on’ or ‘GS>30kt’.

3) Turn the small right knob to select the desired reset mode. ‘Pwr-on’ records trip time, in hours/minutes/seconds, any time the GPS 400 is turned on. ‘GS>30kt’ records trip time any time the GPS-computed ground speed exceeds 30 knots.

4) Press the ENT Key when finished.

5) To reset the total trip time, turn the large right knob to highlight ‘Reset?’ (Figure 8-39) and press the ENT Key.

![Figure 8-38 Reset Mode Window](image)

![Figure 8-39 ‘Reset?’ Highlighted](image)
Utility Page: Trip Statistics

Resetting trip statistics readouts:
1) Select ‘Trip Statistics’ from the Utility Page (Figure 8-40), using the steps described at the beginning of this section.

2) Press the MENU Key to display the Trip Statistics Page Menu with several reset options (Figure 8-41):
 - Reset Trip? - Resets trip odometer and average ground speed readouts
 - Reset Max Speed? - Resets maximum speed readout only
 - Reset Odometer? - Resets odometer readout only
 - Reset All? - Resets all trip statistics readouts

3) Turn the large right knob to select the desired reset option and press the ENT Key.

Utility Page: RAIM Prediction

Predicting RAIM availability:
1) Select ‘RAIM Prediction’ from the Utility Page (Figure 8-42), using the steps described at the beginning of this section.

2) The flashing cursor highlights the waypoint field (Figure 8-43). Use the small and large right knobs to enter the identifier of the waypoint at which the pilot wants to determine RAIM availability. Press the ENT Key when finished. (To determine RAIM availability for the present position, press the CLR Key, followed by the ENT Key.)
3) The flashing cursor moves to the arrival date field. Use the small and large right knobs to enter the date for which the pilot wants to determine RAIM availability. Press the ENT Key when finished.

4) The flashing cursor moves to the arrival time field. Use the small and large right knobs to enter the time for which the pilot wants to determine RAIM availability. Press the ENT Key when finished.

5) The flashing cursor moves to ‘Compute RAIM?’ (Figure 8-44). Press the ENT Key to begin RAIM prediction. Once calculations are complete, the GPS 400 displays one of the following in the RAIM status field:
 - RAIM Not Available - Satellite coverage is predicted to NOT be sufficient for reliable operation during non-precision approaches
 - RAIM Available - Satellite coverage is predicted to be sufficient for reliable operation during all flight phases, including non-precision approaches

Utility Page: Sunrise/Sunset

Calculating sunrise and sunset times at any waypoint or the present position:

1) Select ‘Sunrise/Sunset’ from the Utility Page, using the steps described at the beginning of this section (Figure 8-45).

![Figure 8-45 Sunrise Sunset Highlighted](image)

2) The flashing cursor highlights the waypoint field. Use the small and large right knobs to enter the identifier of the waypoint at which the pilot wants to determine sunrise and sunset times. Press the ENT Key when finished. To determine sunrise/sunset times for the present position, press the CLR Key, followed by the ENT Key.

3) The flashing cursor moves to the date field (Figure 8-46). Use the small and large right knobs to enter the date for which the pilot wants to determine sunrise and sunset times.

![Figure 8-46 Date Field Highlighted](image)

NOTE: RAIM computations predict satellite coverage within ±15 minutes of the specified arrival date and time. Refer to Section 8.3 for specific information regarding RAIM protection limits, also refer to Section 11 for FDE (Fault Detection and Exclusion) information.
4) Press the **ENT** Key to calculate sunrise and sunset times for the selected location and date (Figure 8-47).

Utility Page: Software Versions

The Software Versions Page (Figure 8-48) displays software version information for each of the various subsystems contained within the GPS 400. This page is for information purposes only—no user functions are available from this page.

Utility Page: Database Versions

The Database Versions Page (Figure 8-49) displays the navigation database type and version information as well as the land database type and version. This page is for information purposes only—no user functions are available from this page.

Utility Page: Terrain Database Versions

The Terrain Database Versions Page (Figure 8-50) displays the current version and area of coverage of each terrain and obstacle database. This page is for information purposes only—no user functions are available from this page.
8.4 SETUP 1 PAGE

The Setup 1 Page provides access (via menu options) to airspace alarms, CDI scale adjustment, an arrival alarm, units of measure settings, position formats, map datums, and settings for local or UTC time display. When a menu option is selected, the corresponding page appears providing access to the various unit settings.

Selecting a menu option from the Setup 1 Page:

1) Press the small **right** knob momentarily, to activate the flashing cursor (Figure 8-51).

2) Turn the large **right** knob to select the desired menu option (Figure 8-52), and press the **ENT** Key (Figure 8-53).

The following menu options are available:

- ‘Airspace Alarms’ - Allows the pilot to turn the controlled/special-use airspace message alerts on or off. This does not affect the alerts listed on the Nearest Airspace Page or the airspace boundaries depicted on the Map Page. It simply turns on/off the warning provided when approaching or near an airspace.

An altitude buffer is also provided which ‘expands’ the vertical range above or below an airspace. For example, if the buffer is set at 500 feet, and the aircraft is more than 500 feet above or below an airspace, the pilot is not notified with an alert message; if the aircraft is less than 500 feet above or below an airspace and projected to enter it, the pilot is notified with an alert message. The default is 200 feet.

- ‘CDI/Alarms’ - Allows the pilot to define the scale for the GPS 400’s on-screen course deviation indicator. The scale values represent full scale deflection for the CDI to either side (Figure 8-54). The default setting is ‘Auto’. At this setting, the CDI scale is set to 5 nm during the enroute/oceanic phase of flight. Within 30 nm of the destination airport the CDI scale gradually ramps down to 1.0 nm (terminal area). Likewise when leaving the departure airport the CDI scale is set to 1.0 nm and gradually ramps UP to 5 nm beyond 30 nm (from the departure airport).
During approach operations the CDI scale gradually ramps down even further, to 0.3 nm. This transition normally occurs within 2.0 nm of the final approach fix (FAF). If a lower CDI scale setting is selected (i.e., 1.0 nm or 0.3 nm) the higher scale settings are not selected during any phase of flight. For example, if 1.0 nm is selected, the GPS 400 uses this for the enroute and terminal phase and ramp down to 0.3 nm during an approach. Note that the Receiver Autonomous Integrity Monitoring (RAIM) protection limits listed in Table 8-3 follow the selected CDI scale and corresponding modes:

Table 8-3 CDI Scales

<table>
<thead>
<tr>
<th>CDI Scale/Flight Phase:</th>
<th>RAIM Protection:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto (oceanic)</td>
<td>4.0 nm</td>
</tr>
<tr>
<td>±5.0 nm or Auto (enroute)</td>
<td>2.0 nm</td>
</tr>
<tr>
<td>±1.0 nm or Auto (terminal)</td>
<td>1.0 nm</td>
</tr>
<tr>
<td>±0.3 nm or Auto (approach)</td>
<td>0.3 nm</td>
</tr>
</tbody>
</table>

An arrival alarm, provided on the CDI/Alarms Page, may be set to notify the pilot with a message when the aircraft has reached a user-defined distance to the final destination (the direct-to waypoint or the last waypoint in a flight plan). Once the aircraft has reached the set distance (up to 99.9 units), an ‘Arrival at [waypoint]’ message is displayed.

- ‘Units/Mag Var’ - Allows the pilot to configure the displayed data to standard or metric units of measure. This setting applies to distance, speed, altitude, fuel, pressure, and temperature. Also provides three magnetic variation (heading) options: True, Auto, or User-defined. If ‘Auto’ is selected, all track, course and heading information is corrected to the magnetic variation computed by the GPS receiver. The ‘True’ setting references all information to true north, and the ‘User’ setting corrects information to an user-entered value.
• ‘Position/Map Datum’ - Configures position readout information to the desired position format. The map datum used in the GPS 400 is WGS 84. Note that using a map datum that does not match the charts can result in significant differences in position information. When using the paper charts for reference only, the GPS 400 still provides correct navigation guidance to the waypoints contained in the database, regardless of datum differences.

• ‘Date/Time’ - Provides settings for time format (local or UTC; 12- or 24-hour) and time offset. The time offset is used to define current local time. UTC (also called GMT or Zulu) date and time are calculated directly from the GPS satellites' signals and cannot be changed. To use local time, simply designate the offset by adding or subtracting the correct number of hours.

Setup 1 Page: Airspace Alarms

Setting the airspace warning messages or changing the altitude buffer:

1) Select ‘Airspace Alarms’ from the Setup 1 Page (Figure 8-55), using the steps described at the beginning of this section.

2) Turn the large right knob to highlight the ‘On’/’Off’ field next to the desired airspace type. ‘Other SUAs’ includes alert, caution, danger, training, and warning areas.

3) Turn the small right knob to select ‘On’ or ‘Off’, as desired (Figure 8-56). Press the ENT Key to accept the selection.
4) To change the altitude buffer, turn the large right knob to highlight the ‘Altitude Buffers’ field (Figure 8-57). Use the small and large right knobs to enter the desired buffer distance. Press the ENT Key when finished.

Figure 8-57 Buffer Distance Field Selected

NOTE: When an approach has been loaded into the active flight plan, airspace alert messages are disabled within 30nm of the destination airport.

Setup 1 Page: CDI Scale/Alarms

Changing the CDI scale:

1) Select ‘CDI/Alarms’ from the Setup 1 Page (Figure 8-58), using the steps described at the beginning of this section.

Figure 8-58 CDI/Alarms Highlighted

2) The flashing cursor highlights the ‘Selected CDI’ field (Figure 8-59). Turn the small right knob to select the desired CDI scale. The selected scale and any lower scale settings are used during the various phases of flight as described at the beginning of this section.

Figure 8-59 Selected CDI Field Highlighted

3) Press the ENT Key to accept the selected scale. The ‘System CDI’ field displays the CDI scale currently in use. The ‘System CDI’ setting may differ from the ‘Selected CDI’ depending upon the current phase of flight.
SECTION 8
AUX PAGES

Setting the arrival alarm and alarm distance:

1) Select ‘CDI/Alarms’ from the Setup 1 Page, using the steps described at the beginning of this section.

2) Turn the large right knob to highlight the ‘On’/’Off’ field (directly below ‘Arrival Alarm’).

3) Turn the small right knob to select ‘On’ or ‘Off’, as desired (Figure 8-60). Press the ENT Key to accept the selection.

4) The flashing cursor moves to the alarm distance field (to the immediate right of ‘On’ or ‘Off’). To enter an arrival alarm distance, use the small and large right knobs to enter the desired alarm distance. Press the ENT Key when finished.

NOTE: The CDI scale is always measured in nautical miles, regardless of the current distance units of measure selected on the Units/Mag Var Page.

Setup 1 Page: Units/Mag Var

Setting the magnetic variation:

1) Select ‘Units/Mag Var’ from the Setup 1 Page (Figure 8-61), using the steps described at the beginning of this section.

2) The flashing cursor highlights the heading mode field. Turn the small right knob to select the desired heading mode: Auto, True, or User (Figure 8-62). Press the ENT Key to accept the selection. (The heading modes are described at the beginning of this section.)

3) If ‘User’ is selected, the flashing cursor moves to the user value field (to the immediate right of ‘User’). Use the small and large right knobs to enter the desired magnetic variation direction and value. Press the ENT Key when finished.
Changing the units of measure:

1) Select ‘Units/Mag Var’ from the Setup 1 Page, using the steps described at the beginning of this section.

2) Turn the large right knob to highlight the desired units of measure category (Figure 8-63).

The following categories, and corresponding units of measure, are available:

- **DIS, SPD** - Distance and speed in Nautical (nautical miles/knots), Statute (miles/miles per hour), or Metric (kilometers/kilometers per hour) terms
- **ALT, VS** - Altitude and vertical speed in Feet/feet per minute, Meters/meters per minute, or Meters/meters per second
- **PRESSURE** - Barometric pressure in Inches or Millibars
- **TEMP** - Temperature in degrees Celsius or Fahrenheit
- **FUEL** - Fuel units in Gallons, Imperial Gallons, Kilograms, Liters, or Pounds

3) Turn the small right knob to select the desired units of measure for the selected category. Press the **ENT** Key to accept the selection.

Setup 1 Page: Position Format/Map Datum

Changing the position format:

1) Select ‘Position Format/Map Datum’ from the Setup 1 Page (Figure 8-64), using the steps described at the beginning of this section.

2) The flashing cursor is on the position format field (Figure 8-65). Turn the small right knob to select the desired position format.

The following position formats are available:

- **hddd°mm.mmm’** - Latitude and longitude in degrees and decimal minutes
- **hddd°mm’s.s’** - Latitude and longitude in degrees, minutes and decimal seconds
- **MGRS** - Military Grid Reference System
- **UTM/UPS** - Universal Transverse Mercator/Universal Polar Stereographic grids

3) Press the **ENT** Key to accept the selected format.
Viewing the map datum:

1) Select ‘Position Format/Map Datum’ from the Setup 1 Page, using the steps described at the beginning of this section.

2) The WGS 84 map datum is displayed, this field cannot be changed.

![Figure 8-66 Map Datum WGS 84](image)

Setup 1 Page: Date/Time

Displaying local time or UTC:

1) Select ‘Date/Time’ from the Setup 1 Page, using the steps described at the beginning of this section.

2) The flashing cursor highlights the time format field (Figure 8-67). Turn the small right knob to display a window of available time formats: Local 12hr, Local 24hr, or UTC.

![Figure 8-67 Time Format Window](image)

3) Continue turning the small right knob to select the desired time format.

4) Press the ENT Key to accept the selection.
Setting the local time:

1) Select ‘Date/Time’ from the Setup 1 Page, using the steps described at the beginning of this section.

2) Turn the large **right** knob to highlight the time offset field (Figure 8-68).

3) Use the small and large **right** knobs to enter the desired offset, beginning by entering a minus (-) or plus (+) sign to indicate whether the offset is behind UTC or ahead of UTC. In the United States, all local time offsets use minus, or behind UTC.

4) Press the **ENT** Key to accept the selected offset.

Restoring Factory Settings

When making changes to any Setup 1 Page option, a ‘Restore Defaults?’ menu selection allows the pilot to restore the original factory settings (for the selected option only). For example, with the Airspace Alarms Page displayed, the ‘Restore Defaults?’ option restores all Airspace Alarms Page settings to the original factory values.

Restoring a Setup 1 option to the original factory settings:

1) Select the desired menu option from the Setup 1 Page, using the steps described at the beginning of this section.

2) Press the **MENU** Key to display the Date/Time Page Menu (Figure 8-69).

3) With ‘Restore Defaults?’ highlighted, press the **ENT** Key.
8.5 SETUP 2 PAGE

The Setup 2 Page (Figure 8-70) provides access (via menu options) to display adjustments, parameters which define the nearest airport search, and configuration of displayed data fields. When a menu option is selected, the corresponding page appears providing access to the various unit settings.

The following menu options are available:

- ‘Display’ - Allows the pilot to adjust the display for optimum viewing in any condition. Automatic backlighting is available which uses a built-in photocell (at the top left corner of the display bezel) to make the proper display adjustments without any user intervention. Automatic contrast adjustment varies the screen contrast level based upon current unit temperature. The pilot may also select manual control of the display contrast and backlighting of the GPS 400's display.

- ‘Nearest Airport Criteria’ - Defines the minimum runway length and surface type used when determining the nine nearest airports to display on the Nearest Airport Page. A minimum runway length and/or surface type may be entered to prevent airports with small runways, or runways that are not of appropriate surface, from being displayed. The default settings are ‘0 feet (or meters)’ for runway length and ‘any’ for runway surface type.

- ‘Data Field Configuration’ - Allows the pilot to select what type of data (bearing, course to steer, distance, etc.) is displayed along the left-hand side of the display. If the GPS 400 is interfaced with a traffic information device (see Section 10), thumbnail traffic can be configured for display in place of two of the data fields.
Setup 2 Page: Display

Changing the backlighting intensity:

1) Select ‘Display’ from the Setup 2 Page (Figure 8-73), using the steps described at the beginning of this section (8.5).

2) The flashing cursor highlights the backlight mode field. Turn the small right knob to select the desired mode: Auto or Manual (Figure 8-74). Press the ENT Key to accept the selection.

3) If ‘Manual’ is selected, the flashing cursor moves to the backlight level field. Turn the small right knob to select the desired level. Press the ENT Key to accept the selection.

Changing the display contrast:

1) Select ‘Display’ from the Setup 2 Page, using the steps described at the beginning of this section.

2) Turn the large right knob to highlight the contrast mode field (Figure 8-75).

3) Turn the small right knob to select the desired mode: Auto or Manual. Press the ENT Key to accept the selection.

4) If ‘Manual’ is selected, the flashing cursor moves to the contrast level field. Turn the small right knob to select the desired level. Press the ENT Key to accept the selection.
Setup 2 Page: Nearest Airport Criteria

Setting the minimum runway length and runway surface:

1) Select ‘Nearest Airport Criteria’ from the Setup 2 Page, using the steps described at the beginning of this section.

2) The flashing cursor highlights the runway surface field (Figure 8-76). Turn the small right knob to select the desired surface. The following options are available:
 - Any surface
 - Hard surfaces only
 - Hard or Soft surfaces
 - Water landings only

3) Press the ENT Key to accept the runway surface selection.

4) The flashing cursor moves to the minimum runway length field (Figure 8-77). To enter a different minimum runway length, use the small and large right knobs to enter the desired length. Press the ENT Key when finished.

Setup 2 Page: Data Field Configuration

Configuring the Data Fields:

1) Select ‘Data Field Configuration’ from the Setup 2 Page, using the steps described at the beginning of this section. The flashing cursor highlights the upper data field (Figure 8-78). Turn the large right knob to highlight the data field (upper, middle, or lower data field) to be configured.

2) Turn the small right knob to select the desired data type (Figure 8-79). The available data options are listed in Table 8-4.
Abbreviation | Data Type
--- | ---
BRG | Bearing
CTS | Course To Steer
DIS | Distance
DTK | Desired Track
ESA | Enroute Safe Altitude
ETA | Estimated Time of Arrival
FLOW | Total Fuel Flow
GS | Ground Speed
MSA | Minimum Safe Altitude
TKE | Track Angle Error
TRK | Track
VSR | Vertical Speed Required
WPT | Active Waypoint
XTK | Cross Track Error

Table 8-4

Setup 2 Page: Auxiliary Configuration

Configuring the Auxiliary Data Field:

1) Select ‘Data Field Configuration’ from the Setup 2 Page, using the steps described at the beginning of this section. Turn the large right knob to highlight the Auxiliary Configuration Field (Figure 8-80).

![Figure 8-80 AUX CONFIG Field Highlighted](image)

2) Turn the small right knob to select an option from the Auxiliary Configuration Window (Figure 8-81).

![Figure 8-81 AUX CONFIG Window](image)

3) Press the **ENT** Key to accept the data type.

4) Press the small right knob to remove the cursor and return to the Setup 2 Page.
3) Selecting ‘Config Fields’ configures the upper, middle, and lower data fields to display user selectable data information. Selecting ‘Traffic’ configures the upper and middle data fields to display thumbnail traffic information (Figure 8-82). Press the **ENT** Key to accept the Auxiliary Configuration selection.

![Figure 8-82 Data Field Configuration Page w/Traffic](image)

4) Press the small **right** knob to remove the cursor and return to the Setup 2 Page.

NOTE: The ‘Traffic’ selection in the Auxiliary Configuration Field is only available if the GPS 400 is configured for interface with a traffic information device (see Section 10).

Restoring Factory Settings

When making changes to any Setup 2 Page option, a ‘Restore Defaults?’ menu selection restores the original factory settings (for the selected option).

Restoring a Setup 2 option to the original factory settings:

1) Select the desired menu option from the Setup 2 Page, using the steps described at the beginning of this section.

2) Press the **MENU** Key to display the selected page menu (Figure 8-83).

![Figure 8-83 Data Field Configuration Page Menu](image)

3) With ‘Restore Defaults?’ highlighted, press the **ENT** Key.
SECTION 9: TERRAIN

NOTE: Not all GPS 400 units are equipped with or configured for TERRAIN. See the 400-series Installation Manual (190-00140-02) for TERRAIN configuration information.

9.1 INTRODUCTION

Garmin TERRAIN is a non-TSO-C151b-certified terrain awareness system incorporated into GPS 400 units to increase situational awareness and aid in reducing controlled flight into terrain (CFIT). TERRAIN functionality is a standard feature found in GPS 400 units with main software version 5.01 or above, along with appropriate hardware upgrades.

Operating Criteria

TERRAIN requires the following to operate properly:

- The system must have a valid 3-D GPS position solution.
- The system must have a valid terrain/obstacle/airport terrain database.

Limitations

NOTE: The data contained in the TERRAIN databases comes from government agencies. Garmin accurately processes and cross-validates the data but cannot guarantee the accuracy and completeness of the data.

TERRAIN displays terrain and obstructions relative to the altitude of the aircraft. The displayed alerts are advisory in nature only. Individual obstructions may be shown if available in the database. However, all obstructions may not be available in the database and data may be inaccurate. Never use this information for navigation or to maneuver to avoid obstacles.

Terrain information is based on terrain elevation information in a database that may contain inaccuracies. Terrain information should be used as an aid to situational awareness. Never use it for navigation or to maneuver to avoid terrain.

TERRAIN uses terrain and obstacle information supplied by government sources. The data undergoes verification by Garmin to confirm accuracy of the content, per TSO-C151b. However, the displayed information should never be understood as being all-inclusive.
SECTION 9
TERRAIN

TERRAIN Alerting

TERRAIN uses information provided from the GPS receiver to provide a horizontal position and altitude. GPS altitude is derived from satellite measurements. GPS altitude is converted to a mean sea level (MSL)-based altitude (GPS-MSL altitude) and is used to determine TERRAIN alerts. GPS-MSL altitude accuracy is affected by factors such as satellite geometry, but it is not subject to variations in pressure and temperature that normally affect pressure altitude devices. GPS-MSL altitude does not require local altimeter settings to determine MSL altitude. Therefore, GPS altitude provides a highly accurate and reliable MSL altitude source to calculate terrain and obstacle alerts.

TERRAIN utilizes terrain and obstacle databases that are referenced to mean sea level (MSL). Using the GPS position and GPS-MSL altitude, TERRAIN displays a 2-D picture of the surrounding terrain and obstacles relative to the position and altitude of the aircraft. Furthermore, the GPS position and GPS-MSL altitude are used to calculate and “predict” the aircraft’s flight path in relation to the surrounding terrain and obstacles. In this manner, TERRAIN can provide advanced alerts of predicted dangerous terrain conditions. Detailed alert modes are described later in this section.

Baro-Corrected Altitude

Baro-corrected altitude (or indicated altitude) is derived by adjusting the altimeter setting for local atmospheric conditions. The most accurate baro-corrected altitude can be achieved by frequently updating the altimeter setting to the nearest reporting station along the flight path. However, because actual atmosphere conditions seldom match the standard conditions defined by the International Standard Atmosphere (ISA) model (where pressure, temperature, and lapse rates have fixed values), it is common for the baro-corrected altitude (as read from the altimeter) to differ from the GPS-MSL altitude. This variation results in the aircraft’s true altitude differing from the baro-corrected altitude.

Using TERRAIN

During power-up, the terrain/obstacle database versions are displayed along with a disclaimer to the pilot. At the same time, TERRAIN self-test begins. A test failure is annunciated for TERRAIN as shown in Table 9-4.
9.2 TERRAIN PAGE

See Section 2.5 for a complete description of the TERRAIN Page and its operation.

TERRAIN Symbols

The symbols and colors in Figure 9-1 and Table 9-1 are used to represent obstacles and potential impact points on the TERRAIN Page. TERRAIN uses yellow (caution) and red (warning) to depict terrain information relative to aircraft altitude. Each color is associated with an alert severity level. Terrain graphics and visual annunciations also use these color assignments.

![Figure 9-1 Terrain Altitude/Color Correlation]

<table>
<thead>
<tr>
<th>Obstacle Symbol</th>
<th>Unlighted Obstacle</th>
<th>Lighted Obstacle</th>
<th>Potential Impact Points</th>
<th>Obstacle Location</th>
<th>Alert Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 1000’ AGL</td>
<td>> 1000’ AGL</td>
<td>< 1000’ AGL</td>
<td>Obstacle above or within 100’ below current aircraft altitude</td>
<td>WARNING (Red)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 1000’ AGL</td>
<td>Obstacle between 100’ and 1000’ below current aircraft altitude</td>
<td>CAUTION (Yellow)</td>
</tr>
</tbody>
</table>

Table 9-1 Terrain/Obstacle Colors and Symbology
9.3 TERRAIN ALERTS

TERRAIN Alerts are issued when flight conditions meet parameters that are set within TERRAIN software algorithms. TERRAIN alerts typically employ either an ADVISORY or a CAUTION alert severity level, or both.

When an alert is issued, visual annunciations are displayed.

Annunciations appear in a dedicated field in the lower left corner of the display (Figure 9-2). Annunciations are color-coded according to Table 9-2.

NOTE: TERRAIN Advisory Alerts are displayed as constant black text on a yellow background; TERRAIN Caution Alerts are displayed as flashing black text on a yellow background.

Pop-up terrain alerts (Figure 9-3 & 9-4) can also appear during an alert, but only when the TERRAIN Page is not displayed.

There are two options when an alert is displayed:

- Press the CLR Key. This acknowledges the pop-up alert and returns to the currently viewed page.
- Press the ENT Key. This acknowledges the pop-up alert and accesses the TERRAIN Page.
Table 9-2 shows the possible TERRAIN alert types with corresponding annunciations.

<table>
<thead>
<tr>
<th>Alert Type</th>
<th>Annunciation</th>
<th>Pop-Up Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERRAIN Failure</td>
<td>TER FAIL</td>
<td>None</td>
</tr>
<tr>
<td>TERRAIN Inhibited</td>
<td>TER INHB</td>
<td>None</td>
</tr>
<tr>
<td>TERRAIN Not Available</td>
<td>TER N/A</td>
<td>None</td>
</tr>
<tr>
<td>Required Terrain Clearance (RTC) Advisory</td>
<td>TERRAIN</td>
<td>TERRAIN ADVISORY</td>
</tr>
<tr>
<td>Required Terrain Clearance (RTC) Caution</td>
<td>TERRAIN (FLASHING)</td>
<td>(FLASHING)</td>
</tr>
<tr>
<td>Imminent Terrain Impact (ITI) Advisory</td>
<td>TERRAIN</td>
<td>TERRAIN ADVISORY</td>
</tr>
<tr>
<td>Imminent Terrain Impact (ITI) Caution</td>
<td>TERRAIN (FLASHING)</td>
<td>(FLASHING)</td>
</tr>
<tr>
<td>Required Obstacle Clearance (ROC) Advisory</td>
<td>TERRAIN</td>
<td>OBSTACLE ADVISORY</td>
</tr>
<tr>
<td>Required Obstacle Clearance (ROC) Caution</td>
<td>TERRAIN (FLASHING)</td>
<td>(FLASHING)</td>
</tr>
<tr>
<td>Imminent Obstacle Impact (IOI) Advisory</td>
<td>TERRAIN</td>
<td>OBSTACLE ADVISORY</td>
</tr>
<tr>
<td>Imminent Obstacle Impact (IOI) Caution</td>
<td>TERRAIN (FLASHING)</td>
<td>(FLASHING)</td>
</tr>
<tr>
<td>Premature Descent Alert (PDA) Advisory</td>
<td>TERRAIN</td>
<td>TOO LOW - TERRAIN</td>
</tr>
</tbody>
</table>

Table 9-2 TERRAIN Alert Summary
Table 9-3 shows system status annunciations that may also be issued:

<table>
<thead>
<tr>
<th>Alert Type</th>
<th>TERRAIN Page Annunciation</th>
<th>Pop-Up Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERRAIN System Test Fail</td>
<td>TER FAIL</td>
<td>None</td>
</tr>
<tr>
<td>TERRAIN Alerting is disabled</td>
<td>TER INHB</td>
<td>None</td>
</tr>
<tr>
<td>No GPS position or excessively degraded GPS signal</td>
<td>TER N/A</td>
<td>None</td>
</tr>
<tr>
<td>System Test in progress</td>
<td>TER TEST</td>
<td>None</td>
</tr>
<tr>
<td>System Test pass</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 9-3 Additional System Annunciations

Forward Looking Terrain Avoidance

The Forward Looking Terrain Avoidance (FLTA) alert is used by TERRAIN and is composed of:

- Reduced Required Terrain Clearance (RTC) and Reduced Required Obstacle Clearance (ROC) - These alerts are issued when the aircraft flight path is above terrain, yet is projected to come within the minimum clearance values in Table 9-4. When an RTC or ROC alert is issued, a potential impact point is displayed on the TERRAIN Page.

- Imminent Terrain Impact (ITI) and Imminent Obstacle Impact (IOI) - These alerts are issued when the aircraft is below the elevation of a terrain or obstacle cell in the aircraft’s projected path. ITI and IOI alerts are accompanied by a potential impact point displayed on the TERRAIN Page. The alert is annunciated when the projected vertical flight path is calculated to come within minimum clearance altitudes in Table 9-4.

During the final approach phase of flight, FLTA alerts are automatically inhibited when the aircraft is below 200 feet AGL while within 0.5 nm of the approach runway or below 125 feet AGL while within 1.0 nm of the runway threshold.

Table 9-4 Minimum Terrain and Obstacle Clearance Values for FLTA Alerts

<table>
<thead>
<tr>
<th>Phase of Flight</th>
<th>Minimum Clearance Altitude Level Flight (ft)</th>
<th>Minimum Clearance Altitude Descending (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enroute</td>
<td>700</td>
<td>500</td>
</tr>
<tr>
<td>Terminal</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>Approach</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Departure</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Premature Descent Alerting

A Premature Descent Alert (PDA) is issued when the system detects that the aircraft is significantly below the normal approach path to a runway (Figure 9-5).

PDA alerting begins when the aircraft is within 15 nm of the destination airport. PDA alerting ends when the aircraft is either:
- 0.5 nm from the runway threshold
- at an altitude of 125 feet AGL while within 1.0 nm of the threshold.

TERRAIN Inhibit

TERRAIN also has an inhibit mode that deactivates the FLTA/PDA visual alerts. Pilots should use discretion when inhibiting TERRAIN and always remember to enable the system when appropriate.

Inhibiting TERRAIN:

1) Select the TERRAIN Page and press the MENU Key. ‘Inhibit Terrain?’ is selected by default (Figure 9-6).

2) Press the ENT Key. The ‘TER INHB’ annunciation is displayed in the TERRAIN annunciator field when TERRAIN is inhibited (Figure 9-7).

Enabling TERRAIN:

1) Select the TERRAIN Page and press the MENU Key. ‘Enable Terrain?’ is selected by default.

2) Press the ENT Key. The TERRAIN system is functional again.
TERRAIN NOT AVAILABLE ALERT

TERRAIN requires a 3-D GPS navigation solution along with specific vertical accuracy minimums. Should the navigation solution become degraded or if the aircraft is out of the database coverage area, the annunciation ‘TER N/A’ is generated in the annunciation window and ‘TERRAIN NOT AVAILABLE’ is generated on the TERRAIN Page (Figure 9-8). When the GPS signal is re-established and the aircraft is within the database coverage area, the ‘TER N/A’ visual annunciation is removed.

TERRAIN FAILURE ALERT

TERRAIN continually monitors several system-critical items such as database validity, hardware status, and GPS status. If the terrain/obstacle database is not available, ‘TER FAIL’ is generated in the annunciation window, and ‘TERRAIN has failed’ is generated on the TERRAIN Page (Figure 9-9).

![Figure 9-8: TERRAIN NOT AVAILABLE Display](image)

![Figure 9-9: TERRAIN FAILED Display](image)
9.4 DATABASE INFORMATION FOR TERRAIN

General Database Information

Garmin TERRAIN uses terrain and obstacle information supplied by government sources. The data undergoes verification by Garmin to confirm accuracy of the content, per TSO-C151b. **However, the displayed information should never be understood as being all-inclusive.** Pilots must familiarize themselves with the appropriate sectional charts for safe flight.

NOTE: The data contained in the terrain and obstacle databases comes from government agencies. Garmin accurately processes and cross-validates the data, but cannot guarantee the accuracy and completeness of the data.

The terrain/obstacle databases are contained on a datacard which is inserted in the right-most slot of the GPS 400 units (Appendix A).

NOTE: Obstacles 200’ and higher are included in the Obstacle Database. It is very important to note that not all obstacles are necessarily charted and therefore may not be contained in the Obstacle Database.

Database Versions

The version and area of coverage of each terrain/obstacle database is shown on the Terrain Database Versions Page, located in the AUX Page Group (Figures 9-10 and 9-11, also Section 8.3). Databases are checked for integrity at power-up. If a database is found to be missing and/or deficient, the TERRAIN system fails the self-test and displays the TERRAIN system failure message (see Table 9-3).
Database Updates

Terrain/obstacle databases are updated periodically with the latest terrain and obstacle data. Visit the Garmin website to check for newer versions of terrain/obstacle databases (compare database cycle numbers to determine if a newer version is available). Updated terrain data cards may be obtained by calling Garmin at one of the numbers listed in the front of this document.

Updating terrain/obstacle databases:
1) Acquire a new terrain data card from Garmin.
2) Turn off the power to the GPS 400.
3) Remove the old terrain data card from and insert the new card into the right-most slot of the GPS 400.
4) Turn on the GPS 400 and verify that the TERRAIN system passes self-test.

Terrain/Obstacle Database Areas of Coverage

Table 9-5 lists the area of coverage available in each database. Regional definitions may change without notice.

<table>
<thead>
<tr>
<th>Database</th>
<th>Coverage Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldwide (WW)</td>
<td>Latitudes: N75 to S60, Longitudes: W180 to E180</td>
</tr>
<tr>
<td>United States (US)</td>
<td>Limited to the United States plus some areas of Canada, Mexico, Caribbean, and the Pacific.</td>
</tr>
<tr>
<td>US/Europe</td>
<td>Alaska, Austria, Belgium, Canada*, Caribbean*, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hawaii, Iceland, Ireland, Italy, Latvia, Lithuania, Mexico*, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland, United Kingdom, United States</td>
</tr>
</tbody>
</table>

* Indicates partial coverage

Table 9-5 Database Coverage Areas
SECTION 10: ADDITIONAL FEATURES

CAUTION: The Weather Data Link and TIS information contained in this section is not intended to replace the documentation that is supplied with the GDL 49, the GDL 69(A) Data Link, and the GTX 330 Transponder.

CAUTION: TIS is not intended to be used as a collision avoidance system and does not relieve pilot responsibility to ‘see and avoid’ other aircraft. TIS should not be used for avoidance maneuvers during Instrument Meteorological Conditions (IMC) or other times when there is no visual contact with the intruder aircraft. TIS is intended only to assist in visual acquisition of other aircraft in Visual Meteorological Conditions (VMC). Avoidance maneuvers are not recommended, nor authorized, as a direct result of a TIS intruder display or TIS alert.

NOTE: Garmin is not responsible for Mode S geographical coverage. Operation of the ground stations is the responsibility of the FAA. Refer to the Aeronautical Information Manual for a Terminal Mode S Radar Site Map covering the U.S.

NOTE: This Section assumes the user has experience operating the GPS 400 unit and the Garmin GTX 330 Transponder.

NOTE: TIS and Weather Data Link displays are available only when GPS 400 units are configured with the GTX 330 Mode S Transponder and a GDL 49 or GDL 69(A) Data Link Satellite Receiver.

10.1 TRAFFIC INFORMATION SERVICE (TIS)

This section is written for:
- Garmin GPS 400 Main System Software Version 5.01 and later
- GTX 330/330D Main Software Version 4.01 and later

Some differences in operation may be observed when comparing the information in this manual to earlier or later software versions.

NOTE: This section is written exclusively for GPS 400 units that are configured with the GTX 330 Mode S Transponder. Refer to the 400/500 Series Display Interfaces Pilot’s Guide Addendum (190-00140-10) when interfacing with non-Garmin products.

TIS Operation

Traffic Information Service (TIS) provides a graphic display of traffic advisory information in the cockpit for non-TCAS equipped aircraft. TIS is a ground-based service providing relative location of aircraft tracked by ATC radar within a specified service volume. The TIS ground sensor uses real-time track reports to generate traffic notification. TIS Traffic display is available to aircraft equipped with a Mode S Data Link, such as the Garmin GTX 330 Transponder. TIS traffic information from a GTX 330 Transponder can then be displayed on a GPS 400 unit. Surveillance data includes aircraft tracked by ATC radar within the coverage volume. Aircraft without an operating transponder are invisible to TIS.
TIS displays up to eight traffic targets within 7 nautical miles horizontally from 3000 feet below to 3500 feet above the requesting aircraft (Figure 10-1).

TIS Operational Procedures

TIS warns the user with voice and visual traffic advisories when it predicts an intruder to be a threat. The user should not start evasive maneuvers using information from the GPS 400 display or on a traffic advisory only. The display and advisories are intended only for assistance in visually locating the traffic, due to the lack in resolution and coordination ability. The flight crew should attempt to visually acquire the intruder aircraft and maintain a safe separation in accordance with regulatory requirements and good operating practice. If the flight crew cannot visually acquire the aircraft, they should contact ATC to obtain any information that may assist concerning the intruder aircraft. Based on the above procedures, minor adjustment to the vertical flight path consistent with air traffic requirements are not considered evasive maneuvers.

TIS Limitations

NOTE: This section on TIS Limitations is not comprehensive. Garmin recommends the user review the TIS Limitations section of the Aeronautical Information Manual, Section 1-3-5.

TIS is not intended to be used as a collision avoidance system and does not relieve the pilot responsibility to see and avoid other aircraft. TIS should not be used for avoidance maneuvers during IMC or other times when there is no visual contact with the intruder aircraft. TIS is intended only to assist in visual acquisition of other aircraft in VMC. No recommended avoidance maneuvers are provided for, nor authorized, as a direct result of a TIS intruder display or TIS advisory.

NOTE: The main difference between TIS and TCAS is the source of surveillance data. TCAS uses an airborne interrogator with a half-second update rate, while TIS uses the terminal Mode S ground interrogator and its Data Link to provide about a 5-second update rate. The range accuracy of TIS and TCAS is similar.

While TIS is a useful aid to visual traffic avoidance, it has some system limitations that must be fully understood to ensure proper use. Many of these limitations are inherent in secondary radar surveillance. In other words, the information provided by TIS is no better than that provided to ATC. TIS only displays aircraft with operating transponders installed.

TIS relies on surveillance of the Mode S radar, which is a ‘secondary surveillance’ radar similar to the ATCRBS. TIS operation may be intermittent during turns or other maneuvering. TIS is dependent on two-way, line-of-sight communications between the aircraft and the Mode S radar. When the structure of the client aircraft
comes between the transponder antenna (usually located on the underside of the aircraft) and the ground-based radar antenna, the signal may be temporarily interrupted. Other limitations and anomalies associated with TIS are described in the AIM, Section 1-3-5.

TIS is unavailable at low altitudes in many areas of the U.S., particularly in mountainous regions. Also, when flying near the “floor” of radar coverage in a particular area, intruders below the client aircraft may not be detected by TIS.

TIS information is collected one radar scan prior to the scan during which the uplink occurs. Therefore, the surveillance information is approximately 5 seconds old. In order to present the intruders in a ‘real time’ position, the TIS ground station uses a predictive algorithm in its tracking software. This algorithm uses track history data to extrapolate intruders to their expected positions consistent with the time of display in the cockpit. Occasionally, aircraft maneuvering causes this algorithm to induce errors in the GPS 400 display. These errors primarily affect relative bearing information and traffic target track vector (it lags); intruder distance and altitude remain relatively accurate and may be used to assist “see and avoid”. Some of the more common examples of these errors follow:

- When client or intruder aircraft maneuver excessively or abruptly, the tracking algorithm may report incorrect horizontal position until the maneuvering aircraft stabilizes.
- When a rapidly closing intruder is on a course that crosses the client aircraft course at a shallow angle (either overtaking or head on) and either aircraft abruptly changes course within 0.25 nm, TIS may display the intruder on the wrong side of the client.

The preceding errors are relatively rare occurrences and are corrected within a few radar scans once the course has stabilized.

Users of TIS can render valuable assistance in the correction of malfunctions by reporting their observations of undesirable performance.

Reporters should identify:
- Time of observation
- Location, type, and identity of aircraft
- Condition observed
- Type of transponder, processor, and software in use

Since TIS performance is monitored by maintenance personnel rather than ATC, it is suggested that malfunctions be reported in the following ways:

- By telephone to the nearest Flight Service Station (FSS) facility.
- By FAA Form 8000-7, Safety Improvement Report, a postage-paid card designed for this purpose. These cards may be obtained at FAA FSS's, General Aviation District Offices, Flight Standards District Offices, and General Aviation Fixed Based Operations.
TIS Audio Alerting

The TIS audio alert is generated when the number of Traffic Advisories (TA) on the GPS 400 display increases from one scan to the next. For example, when the first TA appears on the TIS display, the user is alerted audibly. As long as a single aircraft remains on the TIS display, no further audio alert is generated. If a second (or more) TA appears on the display, a new audio alert is sounded.

Limiting TAs reduces “nuisance” alerting due to proximate aircraft. If the number of TAs on the TIS display decreases and then increases, a new audio alert is sounded. A TIS audio alert is also generated when TIS service becomes unavailable. The volume, pitch, and duration of the audio alert (including the choice between a male or female voice) is configured during installation.

The following TIS audio alerts are available:

- “Traffic” - TIS traffic alert is received.
- “Traffic Not Available” - TIS service is not available or out of range.

TIS Symbology

TIS traffic is displayed on the GPS 400 unit according to TCAS symbology on a dedicated Traffic page, and on the moving Map Page. The symbology is shown in Table 10-1 and Figures 10-2, 10-3, and 10-4. The symbology is described in Table 10-2. A Traffic Advisory (TA) symbol appears as a solid yellow circle (or half circle on the outer range ring if the traffic is outside the range of the dedicated Traffic Page). Other Traffic is displayed as hollow white (may be configured as cyan) diamonds.

Altitude deviation from own (client) aircraft altitude is displayed (in hundreds of feet) for each target symbol. If traffic is above own aircraft altitude the deviation is shown above the target next to a ‘+’ symbol. If traffic is below own aircraft altitude the deviation is shown below the target next to a ‘-’ symbol.

Altitude trend is displayed as an up arrow (> +500 fpm), down arrow (< -500 fpm), or no symbol if less than 500 fpm rate in either direction.

The traffic ground track vector protrudes from each symbol in the approximate direction of travel.

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Advisory</td>
<td></td>
</tr>
<tr>
<td>Out-of-Range Traffic Advisory</td>
<td></td>
</tr>
<tr>
<td>Other Traffic</td>
<td></td>
</tr>
</tbody>
</table>

Table 10-1 TIS Symbology

![Traffic Page](image4)

![Out-of-Range TA Symbol](image5)

Figure 10-2 Traffic Page

Figure 10-3 Out-of Range TA Symbol
TIS Traffic data is displayed on the Traffic Page (Figure 10-5) and the Map Page. Unlike other forms of traffic, TIS traffic does not require heading data to be valid on the map. If heading is available the Traffic Page is displayed in heading-up orientation. If it is not available, the Traffic Page is track-up oriented. Orientation is shown in the upper portion of the Traffic Page.

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Advisory (TA)</td>
<td>This symbol (solid yellow circle) is generated when an intruder aircraft approaches on a course that projects to intercept (defined by a 0.5 nm horizontal radius and a relative altitude of ± 500 ft) the pilot’s current course within 34 seconds.</td>
</tr>
<tr>
<td>Out-of-Range Traffic Advisory</td>
<td>This solid yellow half circle appears under the same conditions and has the same urgency as a TA. Its appearance differs from the TA only to signify that the intruder is outside of the current range of the Traffic Page.</td>
</tr>
<tr>
<td>Other Traffic Symbol</td>
<td>This symbol (hollow white diamond) represents traffic detected within the selected display range that does not meet the criteria for a TA. (May be configured as cyan).</td>
</tr>
<tr>
<td>Traffic Ground Track</td>
<td>The target track vector is a short line displayed in 45° increments. The vector protrudes from each target symbol in the approximate direction of travel.</td>
</tr>
</tbody>
</table>

Table 10-2 TIS Options

- **AGE** - If traffic data is not refreshed within 6 seconds, an age indicator (e.g., ‘AGE 00:12’) is displayed in the lower right corner of the display (when displaying traffic). See Figure 10-6. The pilot should be aware that the quality of displayed traffic is reduced in this condition. After another 6 seconds, if data is still not received, the traffic is removed from the display.

TIS Traffic Display Status and Pilot Response
SECTION 10
ADDITIONAL FEATURES

• DATA FAIL - ‘DATA FAIL’ is displayed when data is being received from GTX 330 (Figure 10-7), but there was a failure detected in the data stream. The pilot should see the installer for corrective action.

Figure 10-7 ‘Data Fail’ Message

• FAILED - ‘FAILED’ is displayed when the GTX 330 has indicated it has failed (Figure 10-8). The pilot should see the installer for corrective action.

Figure 10-8 ‘Failed’ Message

• NO DATA - ‘NO DATA’ is displayed when no data is being received from the GTX 330 (Figure 10-9). The pilot should be aware that this status may be a normal mode of operation in a dual transponder installation where the GTX 330 with TIS is not the selected transponder.

Figure 10-9 ‘No Data’ Message

• OPER - When the Traffic Page displays OPER in the upper right hand corner of the display (Figure 10-11), the TIS system is in operational mode and available to display traffic on the Traffic or Map Page.

Figure 10-10 ‘Standby’ Message

• TRFC CST - The ‘TRFC CST’ (traffic coasting) banner (located above the ‘AGE’ indicator in Figure 10-6) indicates that displayed traffic is held even though the data is stale. The pilot should be aware that the quality of displayed traffic is reduced in this condition.

• TRFC RMVD - The ‘TRFC RMVD’ banner (Figure 10-11) indicates that traffic has been removed from the display due to the age of the data being too old to ‘coast’ (for the time period of 12-60 seconds from the last receipt of a TIS message). The pilot should be aware that traffic may be present but not shown.
• UNAVAIL - When a 60 second period elapses with no data, TIS is considered to be unavailable. This state is indicated by the text ‘UNAVAIL’ (Figure 10-12). The pilot should be aware that ‘UNAVAIL’ could indicate a TIS coverage limitation due to a line-of-sight situation, a low altitude condition, or a result of flying directly over the radar site providing coverage (cone of silence).

Traffic Warning Window

When the unit is on any page (other than the NAV Traffic Page) and a traffic threat is imminent, the Traffic Warning Window is displayed (Figure 10-13). The Traffic Warning Window shows a small thumbnail map which can take the user to the Traffic Page by pressing the **ENT** Key, or go back to the previous page by pressing the **CLR** Key.

NOTE: The Traffic Warning Window is disabled when the aircraft ground speed is less than 30 knots or when an approach is active.

Non-Bearing Traffic Advisory (TA) Banner

Traffic is only displayed graphically if aircraft heading data is available. When heading is not available, Traffic Advisories are displayed as non-bearing banners. The banner shown in Figure 10-14 consists of (left to right):

- The ‘TA’ annunciation.
- The distance in miles ‘1.5’, from the client aircraft’s present position to the intruder aircraft.
- A ‘+’ or ‘-‘ symbol indicating whether the intruder aircraft is above (+) or below (-) the client aircraft.
- The difference in altitude ‘04’ (shown in hundreds of feet) between the intruder aircraft and the client aircraft.
- An up or down arrow indicating that the intruder aircraft is climbing or descending at a rate greater than 500 fpm.
Traffic Page Display Range

Various display ranges can be selected for optimal display of TIS traffic information.

Changing the display range on the Traffic Page:

Press the **RNG** Key to zoom through the range selections which are: 12/6 nm, 6/2 nm, and 2 nm.

Map Page

TIS traffic is displayed on the Map Page (Figure 10-15) in addition to the Traffic Page. When a Traffic Advisory is active, the Traffic Banner is displayed in the lower right corner of the Map Page.

The Traffic Mode Selection Menu (Figure 10-16) allows the user to choose from the following options:

TRAFC Mode:
- All trfc - All traffic is displayed on the Map Page
- TA/PA - Only traffic and proximity advisories are displayed on the Map Page (proximity advisories are not applicable to TIS configuration)
- TA only - Only traffic advisories are displayed on the Map Page

TRAFC SMBL - Allows the user to select the map range at which the traffic symbol(s) and TA text appear.

TRAFC LBL - Allows the user to select at what map range the altitude trend arrow and altitude deviation indicator appear.

Configuring TIS traffic on the Map Page:

1) Turn the small **right** knob to select the Map Page.
2) Press the **MENU** key. Turn the small **right** knob to select ‘Setup Map’?
3) The flashing cursor highlights the GROUP field. Turn the small **right** knob to select ‘Traffic’ (Figure 10-17) and press the **ENT** Key.
4) Turn the large **right** knob to select the desired Traffic Mode option. Turn the small **right** knob to select the desired option and press the **ENT** Key. Repeat the step for Traffic Symbol and Traffic Label.
5) Press the **CLR** Key to return the Map Page.
Thumbnail Traffic on Map Page

The Map Page can display traffic in a thumbnail format in any of the top three data fields on the right-hand side of the Map Page.

Displaying Thumbnail Traffic on the Map Page:

1) Turn the small right knob to select the Map Page.
2) Press the MENU Key to display the Page Menu.
3) Turn the small right knob to select ‘Change Fields?’ and press the ENT Key.
4) Select one of the top three configurable fields. Select ‘TRFC’ from the Select Field Type List and press the ENT Key. Note that the thumbnail range defaults to 6 nm and cannot be changed (Figure 10-18).

![Figure 10-18 Thumbnail Traffic on Map Page](image)

NOTE: To display thumbnail traffic on the left-hand side of the display, see Setup 2 Page: Auxiliary Configuration, in Section 8.5.

Highlighting TIS Traffic Using Map Page Panning

Another Map Page feature is panning, which allows the pilot to move the map beyond its current limits without adjusting the map scale. Press the small right knob to select the panning function, a target pointer flashes on the map display. A window appears at the top of the map display showing the latitude/longitude position of the pointer, plus the bearing and distance to the pointer from the present position.

Activating the panning feature and panning the map display:

1) Press the small right knob to activate the panning target pointer.
2) Turn the small right knob to move up (turn clockwise) or down (counterclockwise).
3) Turn the large right knob to move right (turn clockwise) or left (counterclockwise).
4) To cancel the panning function and return to the present position, press the small right knob.

When the target pointer is placed on traffic, the traffic range and altitude separation are displayed (Figure 10-19).

![Figure 10-19 Traffic Range and Altitude Separation](image)
Power-Up Test

The TIS interface performs an automatic test during power-up.

- If the system passes the power-up test, the Standby Screen appears on the Traffic Page.
- If the system passes the power-up test and the aircraft is airborne (as determined by system configuration at the time of installation, see the installer for detailed criteria information), traffic is displayable on the Traffic Page in operating mode.
- If the system fails the power-up test, one of the messages listed in Table 10-3 will be displayed. See the installer for corrective action if the ‘DATA FAIL’, or ‘FAILED’ message is displayed.

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILED</td>
<td>GTX 330 has failed</td>
</tr>
<tr>
<td>DATA FAIL</td>
<td>Data is being received from the GTX 330, but a failure was detected in the datastream</td>
</tr>
<tr>
<td>NO DATA</td>
<td>Data is not being received from the GTX 330</td>
</tr>
</tbody>
</table>

Table 10-3 Power-up Messages

Manual Override

The user can manually switch between standby (STBY) and operating (OPER) modes of operation to manually override automatic operation.

Placing the display into operating mode from the standby mode (to display TIS traffic):

1) Press the small right knob to activate the cursor, and highlight ‘STBY’.

2) Turn the small **right** knob to select ‘OPER?’.

3) Press the **ENT** Key to confirm.

Placing the display into standby mode from operating mode (to stop displaying TIS traffic):

1) Press the small right knob to activate the cursor, and highlight ‘OPER’.

2) Turn the small right knob to select ‘STBY?’.

3) Press the **ENT** Key to confirm.

Flight Procedures

Once the aircraft is airborne (determined by system configuration at the time of installation) the system switches from standby mode to operating mode. The GPS 400 unit displays OPER in the upper right hand corner of the display and begins to display traffic on the Traffic or Map Page.

The TIS Traffic Advisory (TA) should alert the crew to use additional vigilance to identify the intruding aircraft. Any time the traffic symbol becomes a yellow circle or a voice warning is announced, conduct a visual search for the intruder. If successful, maintain visual contact to ensure safe operation. See pages 10-5, 10-6, and 10-7 for a description of pilot responses to TIS display messages.

After Landing

Once the aircraft is on ground (determined by system configuration at the time of installation) the system switches from operating mode to standby mode. The GPS 400 unit displays ‘STBY’. As described previously, both the standby and operating modes can be manually overridden by the display controls.
10.2 GTS 8XX TRAFFIC SYSTEMS

Introduction

All information in this section pertains to the display and control of the Garmin GPS 400/GTS 8XX interface, refer to the 400/500 Series Display Interfaces Pilot’s Guide Addendum (190-00140-10) when interfacing with non-Garmin products.

WARNING: The GTS 8XX interface is intended for advisory use only to aid the pilot in visually acquiring traffic. No avoidance maneuvers should be based solely upon TAS or TCAS I traffic information. It is the responsibility of the pilot in command to see and maneuver to avoid traffic.

NOTE: This section assumes the user has experience operating the GPS 400 and the GTS 8XX.

NOTE: References to the GTS 8XX throughout this document refer equally to the GTS 800, GTS 820, and GTS 850 unless otherwise noted.

NOTE: TIS is disabled when a GTS 8XX unit is installed.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Traffic Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>Traffic Advisory (TA)</td>
<td>A TA (Traffic Advisory) is generated when the GTS 8XX predicts that an intruder aircraft may pose a collision threat. A solid yellow circle represents an intruder aircraft that meets the TA criteria as described in the TA Alerting Conditions section. A TA consists of the traffic symbol and an aural alert (e.g., “traffic, 12 o’clock, high, 3 miles”).</td>
</tr>
<tr>
<td>🟢</td>
<td>Out-of-Range Traffic Advisory</td>
<td>This solid yellow half circle appears (on the outer range ring) under the same conditions and has the same urgency as a TA. Its appearance differs from the TA only to signify that the intruder is outside of the current range of the Traffic Page.</td>
</tr>
<tr>
<td>🟢</td>
<td>Proximity Advisory (PA)</td>
<td>Proximity Advisories (PA) are displayed as solid white (may be configured as cyan) diamonds. PAs are defined as traffic within the 6.0-nm range, within ±1200 ft. of altitude separation, and are not a traffic advisory (TA).</td>
</tr>
<tr>
<td>❁</td>
<td>Other Traffic Symbol</td>
<td>The hollow white (may be configured as cyan) diamond represents traffic detected within the selected display range that does not meet the criteria for a TA or a PA and does not pose an immediate collision threat.</td>
</tr>
</tbody>
</table>

System Description

The GPS 400 provides an optional display interface for the GTS 8XX Traffic Advisory (TAS) and Traffic Collision Avoidance (TCAS I) Systems. The GTS 800 and GTS 820 are TAS systems, the GTS 850 is a TSO-Certified TCAS I system. The GTS 8XX uses active interrogations of Mode A/C/S (GTS 820 and GTS 850 only) and Mode A/C transponders to provide Traffic Advisories to the GPS 400.

The GTS 8XX is an active traffic advisory system that operates as an aircraft-to-aircraft interrogation device. The GTS 8XX monitors the airspace surrounding an aircraft, and advises the flight crew where to look for transponder-equipped aircraft that may pose a collision threat. When the GTS 8XX receives replies to its interrogations, it computes the responding aircraft’s range, bearing, relative altitude, and closure rate. The GTS 8XX then determines the advisory status of the target and sends the location information and alert status to the GPS 400 for display.

The GTS 800 is capable of tracking up to 45 Mode A/C/S intruders. The GTS 820/850 is capable of tracking up to 45 Mode A/C plus 30 Mode S intruders. Up to 30 of the most threatening targets are displayed.
Pilots should be aware of TAS/TCAS system limitations. If an intruder transponder does not respond to interrogations due to antenna shading or marginal transponder performance, it will not be displayed, or display may be intermittent. Pilots should remain vigilant for traffic at all times when using TAS/TCAS systems for non-transponder equipped airplanes or unresponsive airplanes.

TCAS I Surveillance Volume

Top and bottom mounted antennas allow an active surveillance range of up to 12 nm (GTS 800) or 40 nm (GTS 820/850) in the forward direction, and somewhat reduced ranges to the sides and aft of own aircraft due to the directional interrogation patterns. Interference limiting in GTS 820/850 units may automatically reduce range in high density traffic areas.

TA Alerting Conditions

The GTS 8XX automatically adjusts its TA sensitivity level (Table 10-5) to reduce the likelihood of nuisance TA alerting during flight phases likely to be near airports. Sensitivity Level A (less sensitivity) TA is used when the aircraft’s radar altimeter (if equipped) indicates own altitude is less than 2000 feet AGL. If no radar altimeter is present, Sensitivity Level A is active when the landing gear is extended. Level A is also active when groundspeed is less than 120 knots with no radar altimeter present in a fixed gear aircraft.

In all other conditions, Level B (greater sensitivity) TA sensitivity is used to assess TA threats.

Traffic Symbology

Traffic information from the GTS 8XX is displayed on the GPS 400 unit using TAS/TCAS symbology (Table 10-4) on a dedicated Traffic page, and on the moving Map Page. The displayed traffic information generally includes the relative range, bearing, and altitude of intruder aircraft. The GTS 8XX also generates aural announcements heard on the cockpit audio system.

Target altitude relative to own aircraft altitude (relative altitude) is displayed (in hundreds of feet) for each target symbol (Figure 10-20). If traffic is above own aircraft altitude the relative altitude is shown above the target next to a ‘+’ symbol. If traffic is below own aircraft altitude the relative altitude is shown below the target next to a ‘-’ symbol.

Altitude trend (Figure 10-20) is displayed as an up arrow (≥ +500 fpm), down arrow (≤ -500 fpm), or no symbol if less than 500 fpm rate in either direction.

<table>
<thead>
<tr>
<th>Sensitivity Level</th>
<th>Intruder Altitude Available</th>
<th>TA Alerting Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yes</td>
<td>Intruder closing rate provides less than 20 seconds of vertical and horizontal separation. Or: Intruder range is within 0.2 nm and vertical separation is within 600 feet.</td>
</tr>
<tr>
<td>A</td>
<td>No</td>
<td>Intruder closing rate is less than 15 seconds.</td>
</tr>
<tr>
<td>B</td>
<td>Yes</td>
<td>Intruder closing rate provides less than 30 seconds of vertical and horizontal separation. Or: Intruder range is within 0.55 nm and vertical separation is within 800 feet.</td>
</tr>
<tr>
<td>B</td>
<td>No</td>
<td>Intruder closing rate is less than 20 seconds.</td>
</tr>
</tbody>
</table>

Figure 10-20 Traffic Symbol Components

Table 10-5 TA Sensitivity Level and TA Alerting Criteria
Aural Alerts

A TA consists of a displayed traffic symbol (solid yellow circle) and an aural alert. The aural alert announces “traffic”, followed by the intruder aircraft’s position, altitude relative to own aircraft (“high”, “low”, or “same altitude”), and distance from own aircraft; e.g. “traffic, 12 o’clock, high, 3 miles”.

Self-Test

The GTS 8XX automatically performs a self-test upon power up. The self-test checks internal parameters and calibrates components of the GTS 8XX. The self-test can also be initiated by the user during normal operation.

Check for the following test criteria on the Traffic Page during power-up:

- If the GTS 8XX passes the power-up test; and the aircraft both has a squat switch and is on the ground, the Standby Screen is displayed (Figure 10-21).

- If the GTS 8XX passes the power-up test and the aircraft both has a squat switch and is airborne, the Traffic Page is displayed on the 6-nm display range and in the normal altitude display mode.

- If the GTS 8XX passes the power-up test and the aircraft does not have a squat switch, the Standby Screen is displayed (Figure 10-21).

- If the GTS 8XX fails the power-up test (as indicated by a FAILED screen), the GTS 8XX is inoperable, see the GTS 8XX Installation Manual for detailed information on Failure Response.

NOTE: The FAILED message is displayed when the system detects an error that prohibits further traffic display operation.

NOTE: When the system is in standby, the GTS 8XX does not transmit, interrogate, or track intruder aircraft.

User-initiated Test

In addition to the power-up test, the GTS 8XX performs self-tests during normal operation. A self-test is performed once per minute to verify that the antenna is connected. Also, a calibration is performed at varying intervals based on time and temperature. A user-initiated test of the GTS 8XX interface can also be performed. The test criteria are identical to the power up self-test, although the user-initiated test is concluded by an aural pass/fail message.

NOTE: A user-initiated test can only be performed when in standby or failed mode.

Performing a user-initiated test:

1) Turn the small right knob to select the Traffic Page.

2) From the Traffic Page, press the **MENU** Key to display the Page Menu.

3) Turn the small right knob to select ‘Self Test?’.

4) Press the **ENT** Key, ‘TEST’ is displayed.

Figure 10-22 Self-Test Mode
Switching Between Standby and Operating Modes

The unit must be in operating mode for traffic to be displayed. The ability to switch out of standby into operating mode on the ground is especially useful for scanning the airspace around the airport before takeoff. Operating Mode is confirmed by the display of ‘OPER’ in the upper right-hand corner of the Traffic Page (Figure 10-23).

Switching to Operating Mode from Standby Mode:

1) Press the small right knob to activate the cursor and highlight ‘STBY’.
2) Turn the small right knob to select ‘OPER?’.
3) Press the ENT Key to confirm and place the GTS 8XX in operating mode, the GTS 8XX switches out of standby into the 6-nm display range.

NOTE: The GTS 8XX will automatically switch out of standby 8 to 10 seconds after takeoff, which is determined by ground speed or by a transition of the aircraft squat switch (if connected).

Switching to Standby Mode from the Traffic Page:

1) Press the small right knob to activate the cursor and highlight ‘OPER’.
2) Turn the small right knob to select ‘STBY?’.
3) Press the ENT Key to confirm and place the GTS 8XX in standby mode.

NOTE: The GTS 8XX goes into standby mode 24 seconds after landing, which is determined by ground speed or by a transition of the aircraft squat switch (if connected). This delay allows the GTS 8XX to remain out of standby during a touch-and-go maneuver.

Traffic Page

Traffic can be displayed both on the Map Page (only if heading is available) and on the Traffic Page (Figure 10-23).

If the GTS 8XX does not have bearing information for an active TA, ‘TA’ followed by range, relative altitude, and altitude trend is displayed in the lower right corner. The Traffic Banner is displayed if more than one TA with no bearing info is active, while the TA of most immediate threat is displayed in text below the banner.

Traffic Page Display Range

The display range on the Traffic Page can be changed at any time.

Changing the display range on the Traffic Page:

Press the RNG Key to step through the following range options:

- 2 nm
- 2 and 6 nm
- 6 and 12 nm
- 12 and 24 nm (GTS 820/850 only)
- 24 and 40 nm (GTS 820/850 only)
Altitude Display Mode

The GTS 8XX has four altitude display modes (Figure 10-24); Normal (±2,700 ft), Above (-2,700 ft to +9,000 ft), Below (-9,000 ft to +2,700 ft), and Unrestricted (±9,900 ft). The GTS 8XX continues to display up to 30 intruder aircraft within its maximum surveillance range, regardless of the altitude display mode selected.

The selected altitude display mode (Figure 10-25) is displayed in the upper left-hand corner of the Traffic Page.

Changing the Altitude Display Mode:

1) From the Traffic Page, press the small right knob to activate the cursor and highlight the current mode (Figure 10-25).

2) Turn the small right knob to cycle through the options. The screen changes to display the traffic detected within the selected altitude display range. Refer to Figure 10-24 for information regarding altitude display ranges.

3) Press the small right knob to turn the cursor off after the selection is made.

NOTE: Confirmation is not required, the mode is changed immediately when using the small right knob.
Traffic Warning Window

When the unit is not on the traffic page and the GTS issues a Traffic Advisory, the Traffic Warning Window (Figure 10-26) is displayed, which shows a small thumbnail map. When the Traffic Warning Window is displayed, press the ENT Key to display the Traffic Page, or press the CLR Key to return to the previous page.

NOTE: The Traffic Warning Window is disabled when the aircraft ground speed is less than 30 knots or when an approach is active.

Configuring Traffic Data on the Map Page

Traffic is only displayed on the Map Page if aircraft heading data is available.

The Traffic Mode setting allows the operator to choose which traffic type is displayed (all traffic, traffic and proximity advisories, or traffic advisories only). The Traffic Symbol and Traffic Label settings determine the maximum ranges at which these items are displayed.

Configuring traffic on the Map Page:

1) Turn the small right knob to select the Map Page.
2) Press the MENU Key to display the Page Menu.
3) Turn the small right knob to select ‘Setup Map?’.
4) Press the ENT Key. The flashing cursor highlights the GROUP field.
5) Turn the small right knob to select ‘Traffic’.
6) Press the ENT Key (Figure 10-28).
7) Turn the large right knob to select the desired Traffic Mode option.
8) Turn the small right knob to select the desired option.
9) Press the ENT Key. Repeat steps 7-9 for Traffic Symbol and Traffic Label.

Map Page Traffic Banner

A ‘Traffic’ banner will be displayed in the lower right corner of the Map Page (Figure 10-27) if the Display Range setting is beyond the Traffic Symbol setting (Figure 10-28), and a Traffic Advisory is active.
10) Return to the Map Page by pressing the CLR Key.

Thumbnail Traffic on Map Page

Traffic in a thumbnail format can be displayed in any of the three data fields on the right side of the Map Page (Figure 10-29).

Displaying Thumbnail Traffic on the Map Page

1) Turn the small right knob to select the Map Page.
2) Press the MENU Key to display the Page Menu.
3) Turn the small right knob to select ‘Change Fields?’.
4) Press the ENT Key.
5) Turn the large right knob to select one of the three fields.
6) Turn the small right knob to select ‘TRFC’ from the Select Field Type List.
7) Press the ENT Key. (Figure 10-29)

NOTE: The thumbnail range defaults to 6 nm and cannot be changed.

Highlighting Traffic Data Using Map Panning

Another map page function is panning, which allows changing the map beyond its current limits without adjusting the map scale. Select the panning function by pressing the small right knob, a target pointer flashes on the map display (Figure 10-30). Also a window appears at the top of the map display showing the latitude/longitude position of the pointer, and the bearing and distance to the pointer from the present position.

Selecting the panning function and panning the map display:

1) Press the small right knob to activate the panning target pointer (Figure 10-30).

2) Turn the small right knob clockwise to move up, or counterclockwise to move down.
3) Turn the large right knob clockwise to move right, or counterclockwise to move left.
4) To cancel the panning function and return to the present position, press the small right knob.

When the target pointer is placed on traffic, the traffic range and altitude deviation are displayed (Figure 10-30). The traffic is identified as:

- TA: Traffic Advisory
- PA: Proximity Advisory
- TRFC: Other Traffic
10.3 WEATHER DATA LINK INTERFACE

This section is written for:
- Garmin GPS 400 Main System Software Version 5.01 and later
- GDL 49 Main Software Version 2.03 and later
- GDL 69/69A Main Software Version 2.14 and later

Some differences in operation may be observed when comparing the information in this manual to earlier or later software versions.

NOTE: This section is written exclusively for GPS 400 units that are configured with the GDL 49 or GDL 69(A) Data Link Satellite Receiver. Refer to the 400/500 Series Display Interfaces Pilot’s Guide Addendum (190-00140-10) when interfacing with non-Garmin products.

Introduction

GPS 400 units can interface with the GDL 49 or the GDL 69/69A. The GPS 400 unit provides the display and control interface for the textual and graphical weather data link.

Satellite up-linked textual and graphical weather data is received by the GDL 49 on a request/reply basis. Transmissions are made using bursts of compressed data at a rate of 4800 bps. Weather data transmissions are streamed directly to the GDL 69/69A from the XM Satellite Radio network.

The following operational differences are noted between the GDL 69/69A and the GDL 49:
- GDL 49 - NEXRAD and METAR data is collected by the National Weather Service and disseminated to Meteorlogix™, a weather information provider. This data is then delivered to a weather server in the Echo Flight Message System. With the weather data on the system, an incoming customer request is filled, logged, and turned around for delivery to ORBCOMM in less than five seconds (ORBCOMM is a provider of global messaging services using a constellation of 26 low-Earth orbiting satellites). The message is relayed from the satellites to the GDL 49 aboard the aircraft. Once the GDL 49 receives the message, it is displayed on the GPS 400 unit.
- GDL 69/69A - NEXRAD and METAR data is collected by the National Weather Service and disseminated to WxWorks™, a weather information provider. This data is then delivered to XM Satellite for rebroadcast. Data from two XM satellites is then made immediately available to XM customers. The GDL 69/69A receives streaming weather data, processes the data, then sends it to the GPS 400 unit for display.

Functions provided by the Weather Data Link system include:
- Request for and display of NEXRAD radar imagery.
- Request for and display of text-based METAR data.
- Request for and display of a compressed form of METAR data that allows icon representations at reporting stations on a moving map indicating visibility, ceiling, etc.
- Position tracking services are provided through periodic position report transmissions from the GPS 400 unit (available with GDL 49 only).
Weather Products

The following weather products are available for display on the GPS 400 unit via the Weather Data Link interface:

- NEXRAD Data
- Graphical METAR Data
- Text-based METAR Data
- Graphical Temperature/Dewpoint Data
- Graphical Wind Data

NEXRAD Description

WSR-88D weather surveillance radar or NEXRAD (NEXt generation RADar) is a Doppler radar system that has greatly improved the detection of meteorological events such as thunderstorms, tornadoes, and hurricanes. An extensive network of NEXRAD stations provides almost complete radar coverage of the continental United States, Alaska, and Hawaii. The range of each NEXRAD station is 124 nautical miles.

NEXRAD Abnormalities

There are possible abnormalities regarding displayed NEXRAD images. Some, but not all, of those include:

- Ground clutter
- Spurious radar data
- Sun strobes, when the radar antenna points directly at the sun
- Military aircraft deploy metallic dust (chaff) which can cause alterations in radar scans
- Interference from buildings or mountains, which may cause shadows

NEXRAD Limitations

CAUTION: NEXRAD weather data is to be used for long-range planning purposes only. Due to inherent delays and relative age of the data that can be experienced, NEXRAD weather data cannot be used for short-range avoidance of weather.

Certain limitations exist regarding the NEXRAD radar displays. Some, but not all, are listed for the user’s awareness:

- NEXRAD base reflectivity does not provide sufficient information to determine cloud layers or precipitation characteristics (hail vs. rain, etc.).
- NEXRAD base reflectivity is sampled at the minimum antenna elevation angle. An individual NEXRAD site cannot depict high altitude storms at close ranges, and has no information about storms directly over the site.
- NEXRAD resolution varies, depending on the amount and complexity of the weather data being received. The displayed NEXRAD data will reflect the highest intensity level sampled within a 4 sq km area (depending on available system memory).
NEXRAD Intensity

Colors are used to identify the different NEXRAD echo intensities (reflectivity) measured in dBZ (decibels of Z). Reflectivity (designated by the letter Z) is the amount of transmitted power returned to the radar receiver. The dBZ values increase as returned signal strength increases. Precipitation intensity is displayed on the GPS 400 units using colors represented by the dBZ values listed in Table 10-6.

<table>
<thead>
<tr>
<th>Display</th>
<th>dBZ</th>
<th>Rain (inches/hour)</th>
<th>Snow (inches/hour)</th>
<th>Source of NEXRAD Echo</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDL 49</td>
<td>-10</td>
<td>.00</td>
<td>.00</td>
<td>√</td>
</tr>
<tr>
<td>GDL 69</td>
<td>-5</td>
<td>.00</td>
<td>trace</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>.00</td>
<td>trace - .05</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>.00</td>
<td>trace - .10</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0 – trace</td>
<td>.10</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>.01</td>
<td>.1-.2</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>.02</td>
<td>.2-.3</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>.05</td>
<td>.3-.5</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>.09</td>
<td>.5-.7</td>
<td>Light – Moderate</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>.24</td>
<td>.7-1.0</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>.48</td>
<td>>1 or sleet</td>
<td>Heavy</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1.25</td>
<td>>1 or sleet</td>
<td>Heavy</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.5</td>
<td>sleet</td>
<td>Intense</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>5.7</td>
<td>sleet</td>
<td>Extreme</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>12.7</td>
<td></td>
<td>Extreme</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td>Large</td>
</tr>
</tbody>
</table>

Table 10-6 NEXRAD Intensity Colors

NOTE: The information presented in this Pilot’s Guide regarding NEXRAD is not meant to be comprehensive. The NOAA website (www.noaa.gov) contains complete and detailed information regarding NEXRAD weather radar operation and theory.
Requesting NEXRAD Data

NEXRAD data can be requested from the Data Link Page or the Map Page.

Requesting NEXRAD data from the Data Link Page:

1) Select the Data Link Page from the AUX Page Group.

2) Press the small **right** knob to activate the cursor. ‘NexRad Request’ is highlighted (Figure 10-31).

3) Press the **ENT** Key. The NEXRAD Request Page (see Figure 10-32) is displayed.

The NEXRAD Request Page has the following user-selectable fields:

- **Center** - This field allows the pilot to specify reference points for the request. The following five options are available for the ‘Center’ field:
 - ♦ Current Position - Request NEXRAD data from the aircraft’s current position.
 - ♦ Look Ahead - Request NEXRAD data ahead of (along) the current route.
 - ♦ From ID - Request NEXRAD data from a specific waypoint identifier. If ‘From ID’ is selected as the reference point for the request, the ‘WPT’ field is displayed (in place of ‘Position’). The ‘WPT’ field is used to enter a waypoint identifier as the reference point for the request.
 - ♦ From Lat/Lon - Request NEXRAD data from a specific latitude and longitude. This is only selectable when requesting from the map. The ‘Position’ field displays the position of the map cursor and cannot be edited.
 - ♦ From Flight Plan - Request NEXRAD data from one of the waypoints in the active flight plan. This is only selectable when an active Flight Plan has been selected. The ‘Flight Plan’ field (displayed in place of ‘Position’) is used to select which waypoint in the active flight plan to use as the reference point for the request.

- **Radius** - This field selects a request radius from 50 to 250 nautical miles from the selected position.

- **Position (also WPT or Flight Plan)** - ‘Current Posn’-Position is current, ‘Look Ahead’-Position is look ahead position. ‘From ID’-Position is from the ID entered into the WPT field. ‘Flight Plan’ is the ID selected from the active flight plan.
• Auto Request (GDL 49 Only) - This field is used to set the time interval for the GDL 49 to automatically send a NEXRAD data request. The time options are OFF, 10 min, 15 min, 20 min, 30 min, 45 min, and 1 hour. When an auto request time is selected, the first request is sent after the specified time has elapsed from when the field was set (as opposed to immediately sending a request).

NOTE: It is recommended that the pilot turn the Auto Request function on by setting it to ‘10 min’ updates. This setting provides best performance for the GDL 49.

• The ‘Manual Send?’ (GDL 49) or ‘Update Request?’ (GDL 69) field is used to request NEXRAD Data.

4) Use the small and large right knobs to select the desired data (listed on preceding page) and the ENT Key to enter the data into the appropriate fields on the NEXRAD Request Page.

5) Select ‘Manual Send?’ or ‘Update Request?’ and press the ENT Key. The request has been sent. Note that selecting ‘Auto Request’ and pressing the ENT Key does not send the request until after the auto time period.

6) To exit from the NEXRAD Request Page, press the small right knob. The Data Link Page is displayed.

Requesting NEXRAD data from the Map Page:
1) Select the Map Page.
2) Press the MENU Key. The Map Page Options Menu is displayed.
3) Select ‘Request NEXRAD?’ (Figure 10-33) and press the ENT Key.

4) Follow the preceding steps 4 - 6.

NOTE: The pilot may also use the map panning function to request NEXRAD data at a specific map position. After panning and selecting a position on the map, the pilot can press the MENU Key and request the NEXRAD data.

Data Received Message (GDL 49 Only)
When the request has been answered, the message annunciator (MSG) flashes to alert the pilot to one of the following messages depending on the type of data received:

• New NEXRAD Received
• New Graphic METAR Received
• New Text METAR Received
Displaying NEXRAD Data on the Weather Page

To display NEXRAD Data on the Weather Page:

1) Select the NAV Weather Page (Figure 10-34) using the small right knobs. When the GPS 400 unit is configured with the Data Link interface, the Weather Page is the third page in the NAV Page Group (it is the fourth page if a traffic sensor is also configured).

2) Press the small right knob. The upper left hand corner field flashes.
3) Turn small right knob and select ‘NEXRAD’.
4) Press the small right knob.

Customizing NEXRAD Data on the Weather Page

The pilot can customize the NEXRAD data on the Weather Page from the Page Options Menu.

Customizing the NEXRAD data on the Weather Page:

1) From the Weather Page, press the MENU Key to display the NAV Weather Page Options Menu.

2) Select from the following options to customize the NEXRAD data:
 - View 120°?/View 360°? - There are two viewing options available, each shown relative to the position of the aircraft. When the MENU Key is pressed, the alternate selection is shown. Use this option to switch between a radar-like, 120° display of the data, and the default 360° display.
 - Request NEXRAD?/Request METAR? - This option is a link to either the NEXRAD or METAR Request Pages, depending on which is currently displayed on the Weather Page.
 - Display Legend? - This option is a link to the Weather Legend Page. See the Weather Legend Page paragraph following in this section.
SECTION 10
ADDITIONAL FEATURES

Displaying NEXRAD Data on the Map Page

When NEXRAD data is received, it is displayed on the Map Page, in addition to the Weather Page and the Default NAV Page.

Customizing NEXRAD Data on the Map Page

The pilot can customize NEXRAD data on the Map Page by using the Page Menu.

Customizing the Map Page:
1) Go to the Map Page in the NAV Page Group.
2) Press the MENU Key and select ‘Setup Map?’ from the page menu.
3) Select ‘Weather’ from the GROUP field in the Map Setup window (Figure 10-35).

4) Highlight the NEXRAD Symbol field, and use the small right knob to set the desired map range at which to overlay NEXRAD data. The range values are ‘Off’ to 2000 nm miles. Press the ENT Key for the desired range selection. Press the CLR Key to go back to the Map Page.
5) Highlight the NEXRAD Density field, use the small right knob to set the density desired (i.e., the transparency, see Table 10-7) of the NEXRAD cells. The density values are LOW-MED-HIGH. Press the ENT Key to make the selection then press the CLR Key to go back to the Map Page.

<table>
<thead>
<tr>
<th>Precipitation Intensity – Map Configuration</th>
<th>Pattern</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Precipitation – Low</td>
<td></td>
<td>Green</td>
</tr>
<tr>
<td>Light Precipitation – Medium Density</td>
<td></td>
<td>Green</td>
</tr>
<tr>
<td>Light Precipitation – High Density</td>
<td></td>
<td>Green</td>
</tr>
<tr>
<td>Moderate Precipitation – Low & Medium Density</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Moderate Precipitation – High Density</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Heavy Precipitation – Low & Medium Density</td>
<td></td>
<td>Red</td>
</tr>
<tr>
<td>Heavy Precipitation – High Density</td>
<td></td>
<td>Red</td>
</tr>
</tbody>
</table>

Table 10-7 NEXRAD Density Patterns

NOTE: If the pilot changes the NEXRAD Density and/or NEXRAD Symbol fields, these settings changes also affect the Weather Page. For example, if the pilot selects ‘Low’ NEXRAD Density, both the Weather Page and the Map Page display the NEXRAD graphics in the ‘Low’ mode.
The pilot may use the ‘NEXRAD Off?’ and ‘NEXRAD On?’ fields in the Page Menu (Figure 10-36) to turn off the display of NEXRAD data from the Map Page.

![Figure 10-36 Map Page Options Menu](image)

NOTE: If the GPS 400 is configured for Weather Data Link Interface with a GDL 49 or GDL 69, pressing the CLR Key while viewing the Map Page reduces the NEXRAD density one incremental step. All NEXRAD data is removed if the CLR Key is pressed while density is set to low.

Request Shortcuts

The pilot can quickly select the NEXRAD, METAR, or Textual METAR Page for a specific airport from the Airport Location Page.

Three methods of selecting the Airport Location Page:

- Use the small and large right knobs to select the Airport Location Page from the WPT Group of pages.
- On the Map Page, move the target pointer to highlight an on-screen airport. Press the ENT Key.
- On any page that displays an airport identifier, use the cursor and highlight the desired airport identifier. Press the ENT Key.

Once the Airport Location Page is displayed, enter the identifier for the desired airport. Press the MENU Key. The options menu appears (Figure 10-37) listing the following three options:

- Request NEXRAD?
- Request METAR?
- View Text METAR? (if available)

![Figure 10-37 Airport Location Page Options Menu](image)

Highlight the desired option and press the ENT Key. ‘Request NEXRAD?’ and ‘Request METAR?’ options select the NEXRAD and METAR Request Pages, respectively. ‘View Text METAR?’ selects the Textual METAR Page for the desired airport, if textual METAR is available for that airport.
Data Link Request Log Page (GDL 49 Only)

The Data Link Request Log Page (Figure 10-38) is used to display the data that was requested. When a request is received, a check mark is placed in the box.

Viewing the Data Link Request Log Page:
1) Use the small and large right knobs and select the Data Link Page from the AUX Group of pages.
2) Highlight ‘Data Link Log’ (Figure 10-38) and press the ENT Key.
3) The Data Link Request Log Page is displayed (Figure 10-39).

Sending Position Reports (GDL 49 Only)

The Data Link allows for accurate location tracking of the aircraft by sending the aircraft’s position manually or automatically to the EchoFlight website (www.EchoFlight.com) for use by third-party EchoFlight customers.

Sending the Present Position:
1) Select the Data Link Page (see preceding step 1).
2) Highlight ‘Position Report’ (Figure 10-40) and press the ENT Key.
3) The ‘Position Report’ Page is displayed with the following six fields:
 - Nearest VOR - Nearest VOR identifier
 - Distance - The distance from the nearest VOR
 - Radial - The radial from the nearest VOR
 - Position - Displays the aircraft’s current position expressed in Latitude and Longitude
• Auto Request - This field is used to set the time interval for the system to automatically send the position. The time options are OFF, 10 min, 15 min, 20 min, 30 min, 45 min, and 1 hr. When an auto request time is selected, the first report is sent after the specified time has elapsed from when the field was set (as opposed to immediately sending a report). Note that in order to take advantage of EchoFlight’s Automatic Weather Delivery (AWD) service, the time interval must be set to 15 minutes.

• Manual Send? - This field is used to send out a current single position report (Figure 10-41).

Requesting Graphical METARs

Graphical METAR data can be requested from the Data Link Page, Map Page, or Airport Page.

Requesting graphical METARs from the Data Link Page:

1) Select the Data Link Page from the AUX Page Group.

2) Press the small **right** knob to activate the cursor. Turn the small **right** knob and highlight ‘Metar Request’ (Figure 10-42).

3) Press the **ENT** Key. The ‘METAR REQUEST’ Page is displayed (Figure 10-43).

The METAR Request Page has the following user-selectable fields:

- **Format** - This field is used to select between requesting the raw METAR text (Textual) or requesting a graphical summary (Graphic) of several METARs.
SECTION 10 ADDITIONAL FEATURES

NOTE: Textual METARs can only be requested by identifier or by flight plan (if the flight plan contains a METAR station identifier).

- Center - This field allows the pilot to specify reference points for the request. The following five options are available for the ‘Center’ field:
 - Current Position - Request METAR data from the aircraft’s current position.
 - Look Ahead - Request METAR data ahead of (along) the current route.
 - From ID - Request NEXRAD data from a specific waypoint identifier. If ‘From ID’ is selected as the reference point for the request, the ‘WPT’ field is displayed (in place of ‘Position’). The ‘WPT’ field is used to enter a waypoint identifier as the reference point for the request.
 - From Lat/Lon - Request NEXRAD data from a specific latitude and longitude. This is only selectable when requesting from the map. The ‘Position’ field displays the position of the map cursor and cannot be edited.
 - From Flight Plan - Request METAR data from one of the waypoints in the active flight plan. This is only selectable when an active Flight Plan has been selected. The ‘Flight Plan’ field (displayed in place of ‘Position’) is used to select which waypoint in the active flight plan to use as the reference point for the request.
- Radius (Graphical requests only) - This field selects a request radius from 50 to 250 nm from the selected position.
- Position (also WPT or Flight Plan) - ‘Current Posn’-Position is current, ‘Look Ahead’-Position is look ahead position. ‘From ID’-Position is from the ID entered into the WPT field. ‘Flight Plan’ is the ID selected from the active flight plan.
- Auto Request (GDL 49 Only) - This field is used to set the time interval for the GDL 49 to automatically send a NEXRAD data request. The time options are OFF, 10 min, 15 min, 20 min, 30 min, 45 min, and 1 hour. When an auto request time is selected, the first request is sent after the specified time has elapsed from when the field was set (as opposed to immediately sending a request).

NOTE: It is recommended that the pilot turn the Auto Request function ‘on’ by setting it to ‘10 min’ updates. This setting provides best performance for the GDL 49.

- The ‘Manual Send?’ (GDL 49) or ‘Update Request?’ (GDL 69) field is used to request METAR Data.

4) Use the small and large right knobs to select the desired data and the ENT Key to enter the data into the appropriate fields on the METAR Request Page.

5) Select ‘Manual Send?’ or ‘Update Request?’ and press the ENT Key. The request has been sent. Note that selecting ‘Auto Request’ and pressing the ENT Key does not send the request until after the auto time period.

6) To exit from the NEXRAD Request Page, press the small right knob. The Data Link Page is displayed.
Requesting graphical or textual METARs from the Map Page:

1) Select the Map Page.
2) Press the **MENU** Key. The Map Page Options Menu is displayed (Figure 10-44).

![Figure 10-44 Map Page Menu](image)

3) Select ‘Request METAR’ and press the **ENT** Key. The METAR Request Page is displayed. There are four user-selectable parameter fields: Format, Center, Radius, and Position (see preceding pages for detailed information). Change the request parameters as desired.
4) Enter the type of desired METAR Data and the desired radius (graphical requests only).
5) Select ‘Manual Send?’ or ‘Update Request?’ and press the **ENT** Key. The request has been sent. Note that selecting ‘Auto Request’ and pressing the **ENT** Key does not send the request until after the auto time period.
6) To exit from the METAR Request Page, press the small **right** knob. The Map Page is displayed.

Displaying graphical METARs on the NAV Weather Page:

Once received, graphical METAR data is displayed on the NAV Weather Page.

1) Select the NAV Weather Page.
2) Press the small **right** knob. The upper left hand corner field flashes.
3) Turn small **right** knob and select ‘METAR’.
4) Press the small **right** knob.

Viewing graphical METAR Data for a specific airport from the Map Page:

1) Select the Map Page.
2) Move the target pointer to highlight a desired airport. Graphical METAR data is displayed for that airport in a thumbnail image.

NOTE: *For the GDL 69/69A, METAR data is automatically updated every twelve minutes from the time of initial request.*
Weather Legend Page

The symbology unique to Graphical METAR, Winds, and Temperature/Dewpoint data is displayed on the Weather Legend Page. The Weather Legend is accessed from the Weather Page.

NOTE: All METAR, Wind, and Temp-Dewpoint symbols are depicted at the end of this section.

Displaying the Weather Legend:
1) Select the Weather Page and activate the cursor. This selects the weather selection field in the upper left corner of page.
2) Use the small right knob to select METAR, WINDS, or TEMP/DP.
3) Press the MENU Key. The Weather Page Menu is displayed.
4) Turn the small right knob, highlight ‘Display Legend’, and press the ENT Key. The Weather Legend is displayed (Figure 10-45) for the type of data that was selected. Use the small right knob and scroll through the various descriptions for the symbols that are shown. Press the small right knob to return to the Weather Page.

The following symbology is shown for the various types of data:
For METAR Data:
- Age of Data in Minutes
- Ceiling, Visibility, and Precipitation
- Ceiling, Visual Flight Rules
- Precipitation

For Wind Data:
- Age of Data in Minutes
- Winds
- Wind Gust

For Temperature/Dewpoint Data:
- Age of Data in Minutes
- Temperature/Dewpoint

Displaying Textual METARs

Once received, textual METARs are displayed on the METARs Text Page.

Selecting the METARs Text Page:
1) Select the Data Link Page.
2) Select ‘Textual Metar’.
3) Press the ENT Key. The Textual METAR Page (Figure 10-46) is displayed for the airport selected. The pilot can enter a different identifier on the Textual METAR Page.
Entering an identifier:
1) Select the Data Link Page. Highlight ‘TEXTUAL METAR’ and press the ENT Key.
2) Turn the small right knob and scroll through the list of four letter identifiers.
3) Highlight the desired identifier and press the ENT Key.
4) The text box displays the METAR data for the selected identifier.
5) To request an updated graphic or textual METAR for this airport, press the MENU key to access the page menu and select ‘Request METAR?’.
6) The METAR Request Page is displayed. The request option is displayed on the Textual METAR Page.

Displaying Wind Data

Displaying wind data on the NAV Weather Page:
1) Select the NAV Weather Page.
2) Press the small right knob. The upper left hand corner data field flashes.
3) Turn the small right knob and select ‘TEMP/DP’.
4) Press the small right knob. The Temperature/Dewpoints are displayed on the NAV Weather Page.

NOTE: See a complete description of all METAR, Wind, and Temp-Dewpoint symbols at the end of this section.

Troubleshooting

Although it is the responsibility of the facility that installed the GDL 49 or GDL 69/69A to correct any hardware problems, the pilot can perform some quick troubleshooting steps to find the possible cause of a failure.

First, ensure that the owner/operator of the aircraft in which the GDL 49 or GDL 69/69A is installed has subscribed to Echo Flight or XM Satellite Radio for a Service Plan, and verify that it has been activated. Perform a quick check of the circuit breakers to ensure the GDL 49 or GDL 69/69A has power applied. If a failure still exists, continue to the Data Link Status Page.

The fields on the Data Link Status Page may provide insight to a possible failure. Information displayed at this page should be noted and provided to the repair station. The Connectivity Message table should also provide a clear indication of any potential internal failures. If no indications exist, check the circuit breakers and electrical connections to the GDL 49 or GDL 69/69A, and ensure the unit has power applied. Repair stations are equipped to repair the system, should a hardware failure exist.
Monitoring the Data Link

The Data Link Status Page provides an indication of the integrity of the Data Link. The Data Link Page allows the pilot to monitor the system and determine the possible cause of a failure.

View the Data Link Status Page:
1) From the AUX Page Group, select the Data Link Page.
2) Highlight ‘Data Link Status’ and press the ENT Key.
3) The Data Link Status Page (Figure 10-47) is displayed.

![Figure 10-47 Data Link Status Page](image)

The GDL 49 Datalink Status Page shows the following fields:
- TX Queue - Shows the number of requests in the GDL 49’s transmit queue waiting to be sent to the satellite.
- RX Queue - Shows the number of responses in the GDL 49’s receive queue waiting to be sent to the GPS 400.
- Sat ID/Connectivity - Shows the current satellite in view and also indicates the status of the current satellite connection. See Table 10-8.

SAT ID/CONNECTIVITY FIELD

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘_ _ _’</td>
<td>RS-232 communication with the GDL 49 has been lost.</td>
</tr>
<tr>
<td>‘Data Link has failed’</td>
<td>There is a disconnect inside the GDL 49.</td>
</tr>
<tr>
<td>‘Linked to sat’</td>
<td>Can exchange data with the satellite.</td>
</tr>
<tr>
<td>‘Satellite in view’</td>
<td>Found satellite but have not yet identified it.</td>
</tr>
<tr>
<td>‘Searching...’</td>
<td>No satellite is currently in view.</td>
</tr>
</tbody>
</table>

Table 10-8 Sat ID/Connectivity Field

- SATCOM Operation - This field indicates the current activity being performed by the satellite communicator within the GDL 49. Table 10-9 lists the messages that can be displayed, including interpretations of the most common ones:

SATCOM OPERATION FIELD

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘_ _ _’</td>
<td>Unknown task is being performed, or RS-232 communication with the GDL 49 has been lost.</td>
</tr>
<tr>
<td>‘Idle’</td>
<td>Waiting to perform the next task.</td>
</tr>
<tr>
<td>‘Receiving message’</td>
<td>Receiving a response from the satellite.</td>
</tr>
<tr>
<td>‘Sending message’</td>
<td>Transmitting a message.</td>
</tr>
<tr>
<td>‘Sending request’</td>
<td>Transmitting a request to the satellite.</td>
</tr>
</tbody>
</table>

Table 10-9 SATCOM Operation Field

- SATCOM SER NUM - This field shows the serial number assigned to the GDL 49’s internal satellite communicator.
- GDL SW - This field shows the currently installed software version for the GDL 49.
The GDL 69 Datalink Status Page shows the following fields:

- Sat ID/Connectivity - This field shows the current activation status and signal strength of the XM Satellite Radio weather service. Table 10-10 lists the messages that may be shown in the Sat ID field. Table 10-11 lists the messages that may be shown in the Sat Connectivity field.

Table 10-10 Sat ID Field

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘--’</td>
<td>GDL 69/69A - GPS 400 interface communications not yet established.</td>
</tr>
<tr>
<td>‘-0’, ‘-1’, ‘-2’, or ‘-3’</td>
<td>‘-’ = Satellite radio service is not activated. Satellite signal quality is indicated by the numbers 0, 1, 2, or 3; where 0=none, 1=poor, 2=good, and 3=excellent.</td>
</tr>
<tr>
<td>‘XM’</td>
<td>GDL 69/69A not yet communicating with internal satellite radio hardware (normal during power-up).</td>
</tr>
<tr>
<td>‘X0’, ‘X1’, ‘X2’, or ‘X3’</td>
<td>‘X’ = Satellite radio service activated. Satellite signal quality is indicated by the numbers 0, 1, 2, or 3; where 0=none, 1=poor, 2=good, and 3=excellent.</td>
</tr>
</tbody>
</table>

Table 10-11 Connectivity Field

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Satellite in view’</td>
<td>Indicates a signal quality between 1 and 3.</td>
</tr>
<tr>
<td>‘Searching...’</td>
<td>No satellite is currently in view, signal quality is ‘0’.</td>
</tr>
</tbody>
</table>

- SATCOM Operation - This field always indicates ‘Idle’ for the GDL 69/69A.
- SATCOM SER NUM - The first eight characters of this field indicate the satellite radio ID number. A dash separates the satellite radio ID from the currently installed METAR database version in the GDL 69/69A.
- GDL SW - This field shows the currently installed software version for the GDL 69/69A.
Standard Aviation Forecast Abbreviations

The standard aviation forecast abbreviations are listed in Table 10-12.

<table>
<thead>
<tr>
<th>STANDARD AVIATION FORECAST ABBREVIATIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>‘+’ – (Heavy)</td>
<td>‘-’ – (Light)</td>
</tr>
<tr>
<td>’/’ – (Missing or separator)</td>
<td>Axxxx – Altimeter setting (xxxx are numbers)</td>
</tr>
<tr>
<td>AFT – After</td>
<td>BKN – Broken clouds</td>
</tr>
<tr>
<td>BLO – Below</td>
<td>BR – Light fog</td>
</tr>
<tr>
<td>CIG – Ceiling</td>
<td>CLR – Sky clear</td>
</tr>
<tr>
<td>DZ – Drizzle</td>
<td>FEW – Few clouds</td>
</tr>
<tr>
<td>FG – Thick fog</td>
<td>FM – From</td>
</tr>
<tr>
<td>FZ – Freezing</td>
<td>G – Gusts</td>
</tr>
<tr>
<td>KT – Knots</td>
<td>OBSCD – Obscured</td>
</tr>
<tr>
<td>OVC – Overcast clouds</td>
<td>Pxxxx – Hourly Precipitation (xxxx are numbers)</td>
</tr>
<tr>
<td>PRESFR – Pressure falling rapidly</td>
<td>PRESRR – Pressure rising rapidly</td>
</tr>
<tr>
<td>RA – Rain</td>
<td>RMK – Remarks</td>
</tr>
<tr>
<td>SCT – Scattered clouds</td>
<td>SLP – Sea Level Pressure</td>
</tr>
<tr>
<td>SM – Statue Miles</td>
<td>SN – Snow</td>
</tr>
<tr>
<td>TEMPO – Occasionally</td>
<td>Trrn – Terrain</td>
</tr>
<tr>
<td>TS – Thunderstorm</td>
<td>VV – Vertical Visibility</td>
</tr>
</tbody>
</table>

Table 10-12 Forecast Abbreviations

METAR Graphics

The age symbols listed in Table 10-13 are common to METARs, Winds, and Temperature/Dewpoint graphics:

<table>
<thead>
<tr>
<th>METAR, Winds, and Temperature/Dewpoints Age Graphics</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
</tr>
<tr>
<td>0 - 10 minutes (Green)</td>
</tr>
</tbody>
</table>

Table 10-13 Weather Age Graphics

METARs

<table>
<thead>
<tr>
<th>Precipitation Graphics</th>
<th>Light (Green)</th>
<th>Moderate (Green)</th>
<th>Heavy (Yellow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Precipitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10-14 Precipitation Graphics
The symbol in Figure 10-48 indicates the ceiling at KMWM is marginal VFR, with heavy snow and low IFR visibility. The data age is 31-60 minutes old.

Winds

Wind Vector - The wind vector indicates the direction of the surface wind to the nearest 30° increment (e.g. 30°, 60°, 90°, 120°, etc.).

Wind Speed - In general, the sum of the wind barbs (see Table 10-16) is the sustained surface wind speed.

Table 10-15 Ceiling and Visibility Graphics

<table>
<thead>
<tr>
<th>Ceiling</th>
<th>Visibility</th>
<th>Precipitation</th>
<th>Data Age</th>
<th>Station Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR (green bars)</td>
<td>Marginal VFR (green bars)</td>
<td>IFR (yellow bars)</td>
<td>Low IFR (yellow bars)</td>
<td>KMWM</td>
</tr>
</tbody>
</table>

Table 10-16 Wind Speed Graphics

<table>
<thead>
<tr>
<th>Wind Speed</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Blank)</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Short Barb</td>
<td>5 kts</td>
<td></td>
</tr>
<tr>
<td>Long Barb</td>
<td>10 kts</td>
<td></td>
</tr>
<tr>
<td>≥ 37 kts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10-17 Gust Offset Graphics

<table>
<thead>
<tr>
<th>Gust Offset</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Blank)</td>
<td>Gusts are unknown or < 5 kts above sustained wind speed.</td>
</tr>
<tr>
<td>G10</td>
<td>Wind is gusting 5 - 10 kts more than sustained speed.</td>
</tr>
<tr>
<td>G11+</td>
<td>Wind is gusting 11 kts or more above its sustained speed.</td>
</tr>
</tbody>
</table>
To interpret wind speed, add the values of each of the wind speed barbs. In Figure 10-49, there are two long barbs (10 knots each) and one short barb (5 knots each). Thus, the total wind speed is 25 knots. Adding the gust offset to this figure gives winds gusting to 36 knots. Thus, the symbol in Figure 10-49 indicates the surface wind at KFRM is coming from a direction of 300° at a speed of 25 knots, gusting to 36 knots or greater. The data age is 11-20 minutes old.

Temperature - Dewpoints

The Temperature-Dewpoint Range symbols (Table 10-18) display the difference between the reported temperature and dewpoint. Differences are shown in degrees Fahrenheit.

<table>
<thead>
<tr>
<th>Temp - Dewpoint Display Ranges</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Blank)</td>
<td>Unknown</td>
</tr>
<tr>
<td>11°+</td>
<td>11°+ (Green)</td>
</tr>
<tr>
<td>7° - 10°</td>
<td>7° - 10° (Green)</td>
</tr>
<tr>
<td>0° - 6°</td>
<td>0° - 6° (Yellow)</td>
</tr>
</tbody>
</table>

Table 10-18 Temp-Dewpoint Ranges

This symbol in Figure 10-50 displays the difference between the reported temperature and dewpoint as 7-10 degrees Fahrenheit at KSPW.
SECTION 11: FAULT DETECTION
AND EXCLUSION

Fault Detection and Exclusion (FDE) is incorporated in the Garmin GPS 400 main and GPS software version 3.00 and higher. FDE algorithms provide a basis for approval per the requirements for “GPS as a Primary Means of Navigation for Oceanic/Remote Operations”, FAA Notice N8110.60. The oceanic flight phase is used by the GPS 400 when the aircraft is more than 200 nm from the nearest airport. FDE requires no pilot interaction during flight; predicting the capability of the GPS constellation to provide service during a flight is done by the pilot prior to departure.

11.1 DETECTION AND EXCLUSION

FDE consists of two distinct parts, fault detection and fault exclusion. The detection function refers to the capability to detect a satellite failure which can affect navigation. Upon detection, the exclusion function excludes one or more failed satellites and prevents them from being used during navigation. This allows the GPS receiver to return to normal performance without interruption. The process is entirely automated and does not require pilot interaction during flight. On the Satellite Status Page, the pilot can view information related to FDE operation. To enhance safety, FDE functionality is provided for other phases of flight (non-precision approach, terminal, enroute). The FDE functionality for non-oceanic flight phases adheres to the same missed alert probability, false alert probability, and failed exclusion probability specified by N8110.60.

Figure 11-1 shows satellite number 9 exclusion during oceanic phase of flight. No message notifying the user of exclusion appears. In addition to the EPE and DOP fields, there is the Horizontal Uncertainty Level (HUL) field which displays a 99% confidence level that the aircraft position is within a circle with a radius of the value displayed in the HUL field.

![Figure 11-1 Satellite Status Page](image111.png)
11.2 PRE-DEPARTURE VERIFICATION OF FDE

Since FDE is based upon the exclusion of “bad” satellites, it is necessary to ensure there will be an adequate number of satellites in the GPS constellation that are still able to provide a navigation solution. An FDE prediction must be performed prior to departure for a flight involving:

- Oceanic/Remote operation where GPS is to be the sole source of navigation per FAA Notice 8110.60.
- U.S. Area Navigation (RNAV) routes, Standard Instrument Departures (SIDs), or Standard Terminal Arrival Routes (STARs) if a NOTAM indicates a GPS satellite (or satellites) is scheduled to be out-of-service, per FAA AC 90-100 ‘U.S. Terminal and En Route Area Navigation (RNAV) Operations’.

Prior to departure, the operator must use the FDE Prediction Program supplied with the 400-series Trainer Software (Figure 11-2) to demonstrate that there are no outages in the capability to navigate on the specified route of flight (the FDE Prediction Program determines whether the GPS constellation is robust enough to provide a navigation solution for the specified route of flight). The trainer software and the document “400/500-series FDE Prediction Instructions” (190-00643-00) are available on Garmin’s website for free download (www.garmin.com).
SECTION 12: MESSAGES, ABBREVIATIONS, AND NAV TERMS

12.1 MESSAGES

The GPS 400 uses a flashing ‘MSG’ annunciator at the bottom of the screen (directly above the MSG Key) to alert the pilot of any important information or warnings. While most messages are advisory in nature, warning messages may require pilot intervention.

When the ‘MSG’ annunciator flashes, press the MSG Key to display the message. Press the MSG Key again to return to the previous page.

The following is a list of available messages and their meanings:

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airspace ahead -- less than 10 minutes</td>
<td>The GPS-calculated course is projected to enter a special use airspace within 10 minutes. This message is automatically disabled within 30 nm of an arrival airport, when an approach is loaded.</td>
</tr>
<tr>
<td>Airspace near and ahead</td>
<td>The GPS-calculated position is within 2 nm of the boundary of a special use airspace and the course is projected to enter the airspace within 10 minutes. This message is automatically disabled within 30 nm of an arrival airport, when an approach is loaded.</td>
</tr>
<tr>
<td>All data referenced to True North</td>
<td>The GPS 400 has not detected a NavData Card in the left data card slot.</td>
</tr>
<tr>
<td>Altitude input failure</td>
<td>The GPS 400 is configured to receive altitude serializer data (Icarus, Rosetta, or Shadin) and it is not being received. Or, the data was being received, but has been interrupted. If a grey code altitude input is available, it is used instead. If the problem persists, contact a Garmin dealer and check the installation and installation settings. When this message occurs, no pilot action is required if enough satellites are available for a 3D position fix (provided no RAIM warnings are present). However, if only a 2D position fix is possible, the pilot should maintain the GPS altitude within 1,000 feet of pressure altitude by entering the altitude on the Position Page.</td>
</tr>
<tr>
<td>Approach is not active</td>
<td>The approach could not transition to ‘active’, at 2 nm or closer to the FAF. Verify that ‘SUSP’ does not appear directly above the OBS Key, indicating the auto waypoint sequencing is suspended. This message also appears if Receiver Autonomous Integrity Monitoring (RAIM) has determined that sufficient GPS satellite coverage does not exist for the current phase of flight (along with a ‘RAIM not available from FAF to MAP’ message).</td>
</tr>
<tr>
<td>Approaching target altitude</td>
<td>The current GPS-computed altitude is within 500 feet of the final Vertical Navigation target altitude.</td>
</tr>
<tr>
<td>Message</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Approaching VNAV profile</td>
<td>The aircraft is within one minute of reaching the initial Vertical Navigation descent, or climb, point.</td>
</tr>
<tr>
<td>Arrival at waypoint [waypoint name]</td>
<td>The aircraft is within the arrival alarm circle for the indicated waypoint. The size of the arrival alarm circle is defined from the ‘CDI/alarms’ menu option on the Setup 1 Page.</td>
</tr>
<tr>
<td>Cannot navigate locked FPL</td>
<td>The pilot has attempted to navigate a flight plan (FPL) with one or more locked waypoints. A waypoint can be ‘locked’ when the NavData Card is replaced and the waypoint(s) does not exist in the new database.</td>
</tr>
<tr>
<td>Can’t change an active waypoint</td>
<td>An attempt has been made to modify the position of the active ‘to’ or ‘from’ waypoint. The GPS 400 does not allow modifications to user waypoints currently being utilized for navigation guidance.</td>
</tr>
<tr>
<td>Can’t delete an active or FPL waypoint</td>
<td>An attempt has been made to delete the active ‘to’ or ‘from’ waypoint. The GPS 400 does not allow the deletion of user waypoints currently being utilized for navigation guidance.</td>
</tr>
<tr>
<td>Check unit cooling</td>
<td>The GPS 400 has detected excessive display backlighting temperature. The backlighting has been automatically dimmed to reduce the temperature. Check for adequate ventilation or check cooling air flow. Contact a Garmin dealer for assistance.</td>
</tr>
<tr>
<td>Data card failure</td>
<td>The GPS 400 has detected a problem with the NavData Card. The data is not usable and the card should be returned to Jeppesen or to a Garmin dealer.</td>
</tr>
<tr>
<td>Data transfer cancelled (crossfill is busy)</td>
<td>An attempt to transfer flight plan data during a unit-to-unit crossfill was cancelled. The host unit is busy or unable to communicate. Wait until any previous crossfill operation is complete before attempting the transfer again.</td>
</tr>
<tr>
<td>Data transfer cancelled (data invalid)</td>
<td>An attempt to transfer a single user waypoint during a unit-to-unit crossfill was cancelled. No waypoint was specified on the Crossfill Page. Select a user waypoint and attempt the transfer again.</td>
</tr>
<tr>
<td>Data transfer cancelled (version mismatch)</td>
<td>An attempt to transfer data during a unit-to-unit crossfill was cancelled. The database versions of the two GPS 400s are not identical. If necessary, update the database(s) so they match. Contact Jeppesen or a Garmin dealer for assistance.</td>
</tr>
<tr>
<td>Data transfer error, please re-transmit</td>
<td>An error was detected during unit-to-unit crossfill of user data (user waypoints and/or flight plans). The data transfer should be attempted again.</td>
</tr>
<tr>
<td>Data transfer is complete</td>
<td>The unit-to-unit crossfill of user waypoint data has finished.</td>
</tr>
<tr>
<td>Message</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Database changed, validate user modified procedures</td>
<td>The pilot has modified one or more approaches, departures, or arrivals from their original published form. When the NavData Card is replaced (database update), manually verify the changes in the new database. This message occurs each time a flight plan containing a modified procedure (generated from a prior database version) is activated. To eliminate the message, re-create the flight plan from the new database, then make the desired modifications.</td>
</tr>
<tr>
<td>Degraded accuracy</td>
<td>GPS position accuracy has been degraded and RAIM is not available. Poor satellite geometry (or coverage) has resulted in a horizontal DOP greater than 4.0. Additional cross-checking using another navigation source is required to verify the integrity of the GPS position.</td>
</tr>
<tr>
<td>Display backlight failure</td>
<td>The GPS 400 has detected a failure in the display backlighting. The unit should be taken to a Garmin dealer for service.</td>
</tr>
<tr>
<td>Do not use for navigation</td>
<td>The GPS 400 is in Demo Mode and must not be used for actual navigation.</td>
</tr>
<tr>
<td>FPL has been truncated</td>
<td>The flight plan (FPL) was truncated because not enough room existed to insert an approach, departure, or arrival. This message also appears when an approach has been deleted from a stored flight plan because an approach could not be found. These conditions may occur upon power up when a database change increases the number of waypoints in, or removes an approach from, an instrument procedure.</td>
</tr>
<tr>
<td>FPL is full - remove unnecessary waypoints</td>
<td>An attempt has been made to add more than 31 waypoints to a flight plan (FPL). The GPS 400 does not allow more than 31 waypoints per flight plan.</td>
</tr>
<tr>
<td>FPL leg will not be smoothed</td>
<td>The upcoming flight plan (FPL) leg is too short for smooth waypoint transitions. Expect a rapid change in the CDI.</td>
</tr>
<tr>
<td>FPL waypoint is locked</td>
<td>At least one flight plan (FPL) waypoint is locked because the waypoint has been removed from the current NavData Card (database change), the data card is missing, or the data card has failed.</td>
</tr>
<tr>
<td>FPL waypoint moved</td>
<td>The position data for one or more flight plan (FPL) waypoints moved at least 0.33 arc minutes in the current NavData Card (database change).</td>
</tr>
<tr>
<td>FPL waypoint was deleted</td>
<td>At least one flight plan (FPL) waypoint is no longer available when a new NavData Card was installed (database change).</td>
</tr>
<tr>
<td>GPS has failed</td>
<td>The GPS 400 has detected a failure in its GPS receiver. The GPS receiver is not available and the unit should be returned to a Garmin dealer for service.</td>
</tr>
<tr>
<td>GPS is not responding</td>
<td>Internal system-to-system communication between the main processor and the GPS receiver has failed. Operational status of the GPS receiver is unknown and the unit should be returned to a Garmin dealer for service.</td>
</tr>
</tbody>
</table>

SECTION 12 – MESSAGES, ABBREVIATIONS, & NAV TERMS
SECTION 12 – MESSAGES, ABBREVIATIONS, & NAV TERMS

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS needs service</td>
<td>The GPS 400 has detected a failure in its GPS receiver. The GPS receiver may still be usable, but the unit should be returned (at the earliest convenience) to a Garmin dealer for service.</td>
</tr>
<tr>
<td>GPS stored data was lost</td>
<td>Satellite almanac, ephemeris and time data have been lost due to a memory battery failure, system reset, or data expiration (data over six months old).</td>
</tr>
<tr>
<td>Inside airspace</td>
<td>The GPS-calculated position lies within the boundaries of a special use airspace. This message is automatically disabled within 30 nm of an arrival airport, when an approach is loaded.</td>
</tr>
<tr>
<td>Invalid closest pt of FPL</td>
<td>A closest point cannot be created from the waypoint entered on the ‘Closest point of flight plan’ window. This occurs when the selected waypoint is beyond the limits of all legs in the flight plan, too far away, or when a unique waypoint name for the closest point cannot be created.</td>
</tr>
<tr>
<td>Invalid FPL modification</td>
<td>An attempt was made to modify the final course segment (FAF to MAP) of an instrument approach. The GPS 400 does not allow the modifications.</td>
</tr>
<tr>
<td>Invalid waypoint ident</td>
<td>An attempt was made to create a user waypoint with an invalid name. The GPS 400 does not allow spaces between characters in the waypoint name.</td>
</tr>
<tr>
<td>MAIN processor requires service</td>
<td>The GPS 400 has detected a failure in the main system processor. The GPS 400 is not usable and should be taken to a Garmin dealer for service.</td>
</tr>
<tr>
<td>Memory battery low</td>
<td>The internal battery that sustains user memory is low and should be replaced by a Garmin dealer as soon as possible. Failure to do so may result in loss of stored data, including flight plans, user waypoints, unit settings, and satellite data.</td>
</tr>
<tr>
<td>Near airspace -- less than 2 nm</td>
<td>The GPS-calculated position is within 2 nm of a special use airspace boundary, but the aircraft is not projected to enter the airspace. This message is automatically disabled within 30 nm of an arrival airport, when an approach is loaded.</td>
</tr>
<tr>
<td>Need altitude - display position page</td>
<td>The GPS receiver needs altitude input in order to start and/or continue 2D navigation. Select the Position Page and verify the altitude reading. If the altitude is in error by more than 500 feet, enter the current altitude as accurately as possible. An inaccurate altitude directly translates into inaccurate position information.</td>
</tr>
<tr>
<td>No altitude input is being received</td>
<td>No altitude data is being received from RS-232 (Serializer: Icarus, Rosetta or Shadin) or grey code inputs. If the problem persists, contact a Garmin dealer and check the installation and installation settings. When this message occurs, no pilot action is required if enough satellites are available for a 3D position fix (provided no RAIM warnings are present). However, if only a 2D position fix is possible, the pilot should maintain the GPS altitude within 1,000 feet of pressure altitude by entering the altitude on the Position Page.</td>
</tr>
<tr>
<td>Message</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>No basemap data available</td>
<td>The GPS 400 has detected a failure in the built-in basemap (land data) memory. Land data does not appear on the Map Page. Other unit functions continue to work normally; however, the GPS 400 should be taken to a Garmin dealer for service at the earliest convenience.</td>
</tr>
<tr>
<td>Not receiving input data on 429 Channel 1</td>
<td>No data has been received on the ARINC 429 channel 1 connection for a period exceeding five seconds. If the problem persists, the installation should be checked by a Garmin dealer.</td>
</tr>
<tr>
<td>Not receiving input data on 429 Channel 2</td>
<td>No data has been received on the ARINC 429 channel 2 connection for a period exceeding five seconds. If the problem persists, the installation should be checked by a Garmin dealer.</td>
</tr>
<tr>
<td>Not receiving input data on 232 Channel 1</td>
<td>No data has been received on the RS-232 channel 1 connection for a period exceeding ten seconds. If the problem persists, the installation should be checked by a Garmin dealer.</td>
</tr>
<tr>
<td>OBS key stuck</td>
<td>The OBS Key is stuck in the enabled (or pressed) state. Try pressing the OBS Key again to cycle its operation. If the message persists, contact a Garmin dealer for assistance.</td>
</tr>
<tr>
<td>Poor GPS coverage</td>
<td>The GPS receiver cannot acquire a sufficient number of satellites to compute a position and provide navigation.</td>
</tr>
<tr>
<td>Power down and re-initialize</td>
<td>The GPS 400 cannot calculate a position due to abnormal satellite conditions. The unit is unusable until power has been cycled off and back on. Abnormal satellite conditions may exist, an alternate means of navigation may be needed.</td>
</tr>
<tr>
<td>RAIM is not available</td>
<td>Receiver Autonomous Integrity Monitoring (RAIM) has determined that sufficient GPS satellite coverage does not exist for the current phase of flight. (The CDI/HSI NAV flag also appears.) Select an alternate source for navigation guidance.</td>
</tr>
<tr>
<td>RAIM not available from FAF to MAP waypoints</td>
<td>When performing an instrument approach, Receiver Autonomous Integrity Monitoring (RAIM) has determined that sufficient GPS satellite coverage does not exist to meet the required protection limits. Select an alternate source for navigation guidance.</td>
</tr>
<tr>
<td>RAIM position warning</td>
<td>Although sufficient GPS satellite coverage may exist, Receiver Autonomous Integrity Monitoring (RAIM) has determined the information from one or more GPS satellites may be in error. The resulting GPS position may be in error beyond the limits allowed for the current phase of flight. Cross-check the position with an alternate navigation source. If the warning occurs during a final approach segment (FAF to MAP), execute the published missed approach.</td>
</tr>
<tr>
<td>Scheduler message -- [user entered text]</td>
<td>The user-entered scheduler message time has expired, and the scheduler message is displayed.</td>
</tr>
<tr>
<td>Searching the sky</td>
<td>The GPS 400 is searching the sky for GPS satellite almanac data or the GPS receiver is in AutoLocate Mode. Allow the unit to complete data collection (approximately five minutes) before turning it off.</td>
</tr>
<tr>
<td>Message</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Select auto sequence</td>
<td>The OBS Key was pressed, disabling auto sequencing of waypoints (in a flight plan or instrument procedure). The OBS Key should be pressed again to enable auto sequencing, because 1) no destination waypoint has been selected or 2) the GPS receiver cannot currently determine its position.</td>
</tr>
<tr>
<td>mode</td>
<td></td>
</tr>
<tr>
<td>Set course to [###]°</td>
<td>The course select for the external CDI (or HSI) should be set to the specified course. The message only occurs when the current selected course is greater than 10° different from the desired track.</td>
</tr>
<tr>
<td>Steep turn ahead</td>
<td>This message appears approximately one minute prior to a turn in one of the following three conditions: 1) the turn requires a bank angle in excess of 25° in order to stay on course, 2) the turn requires a course change greater than 175°, or 3) during a DME arc approach the turn anticipation distance exceeds 90 seconds.</td>
</tr>
<tr>
<td>Stored data was lost</td>
<td>All user waypoints, flight plans, and system settings have been lost due to a memory battery failure or system reset.</td>
</tr>
<tr>
<td>Terrain</td>
<td>See Section 9.3 for complete list of TERRAIN related Alerts and Annunciations.</td>
</tr>
<tr>
<td>Terrain configuration</td>
<td>The software has detected a change in the terrain configuration.</td>
</tr>
<tr>
<td>conflict</td>
<td>The hardware configuration does not match the terrain software configuration. The operational status of the terrain components is unknown and the unit should be returned to a Garmin dealer for service.</td>
</tr>
<tr>
<td>Terrain configuration</td>
<td></td>
</tr>
<tr>
<td>has changed</td>
<td>The software has detected a change in the terrain configuration.</td>
</tr>
<tr>
<td>Terrain has failed</td>
<td>The terrain functionality self-test has failed. The operational status of the terrain components is unknown and the unit should be returned to a Garmin dealer for service.</td>
</tr>
<tr>
<td>Timer has expired</td>
<td>The count down timer has reached zero.</td>
</tr>
<tr>
<td>Traffic device needs</td>
<td>Either the TCAD battery or the TCAD interrogation device has failed. If the message persists, contact a Garmin dealer for assistance.</td>
</tr>
<tr>
<td>service</td>
<td></td>
</tr>
<tr>
<td>Unit configuration</td>
<td>The GPS 400 has detected a failure (during initial power up) in its system configuration. Some system components may be unusable. Try cycling power off and back on. If the message persists, contact a Garmin dealer for assistance.</td>
</tr>
<tr>
<td>has changed</td>
<td></td>
</tr>
<tr>
<td>User card format</td>
<td>A data card has been inserted, but the format of the card is not recognized.</td>
</tr>
<tr>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Waypoint already exists</td>
<td>The name entered for a user waypoint already exists in memory.</td>
</tr>
<tr>
<td>Waypoint(s) have been</td>
<td>One or more user waypoints were updated during a unit-to-unit crossfill operation.</td>
</tr>
<tr>
<td>replaced</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Waypoint memory is full</td>
<td>All 1000 user waypoint locations in the GPS 400’s memory have been used. Delete unwanted waypoints to make room for new entries.</td>
</tr>
</tbody>
</table>
12.2 Abbreviations

The following is a list of abbreviations used on the GPS 400 and their meanings:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTV</td>
<td>Active</td>
</tr>
<tr>
<td>ALT</td>
<td>Altitude</td>
</tr>
<tr>
<td>APPRCHING</td>
<td>Approaching</td>
</tr>
<tr>
<td>APR</td>
<td>Approach</td>
</tr>
<tr>
<td>APT</td>
<td>Airport</td>
</tr>
<tr>
<td>ARSPC</td>
<td>Airspace</td>
</tr>
<tr>
<td>ARTCC</td>
<td>Air Route Traffic Control Center</td>
</tr>
<tr>
<td>ARVL</td>
<td>Arrival</td>
</tr>
<tr>
<td>AUX</td>
<td>Auxiliary</td>
</tr>
<tr>
<td>AVGAS</td>
<td>Aviation-grade Gasoline</td>
</tr>
<tr>
<td>AVTN</td>
<td>Aviation</td>
</tr>
<tr>
<td>BARO</td>
<td>Barometric Pressure</td>
</tr>
<tr>
<td>BRG</td>
<td>Bearing To</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>CAS</td>
<td>Calibrated Airspeed</td>
</tr>
<tr>
<td>CDI</td>
<td>Course Deviation Indicator</td>
</tr>
<tr>
<td>CLR</td>
<td>Clear</td>
</tr>
<tr>
<td>COM</td>
<td>Communications Transceiver</td>
</tr>
<tr>
<td>CRSR</td>
<td>Cursor</td>
</tr>
<tr>
<td>CTA</td>
<td>ICAO Control Area</td>
</tr>
<tr>
<td>CTAF</td>
<td>Common Traffic Advisory Frequency</td>
</tr>
<tr>
<td>CTR</td>
<td>Center (ARTCC)</td>
</tr>
<tr>
<td>CTS</td>
<td>Course To Steer</td>
</tr>
<tr>
<td>CUM</td>
<td>Cumulative</td>
</tr>
<tr>
<td>DB</td>
<td>Database</td>
</tr>
<tr>
<td>DEN</td>
<td>Density</td>
</tr>
<tr>
<td>DEP</td>
<td>Departure</td>
</tr>
<tr>
<td>DIS</td>
<td>Distance</td>
</tr>
<tr>
<td>DME</td>
<td>Distance Measuring Equipment</td>
</tr>
<tr>
<td>DOP</td>
<td>Dilution of Precision</td>
</tr>
<tr>
<td>DTK</td>
<td>Desired Track</td>
</tr>
<tr>
<td>EFF</td>
<td>Efficiency</td>
</tr>
<tr>
<td>ELEV</td>
<td>Elevation</td>
</tr>
<tr>
<td>ENDUR</td>
<td>Endurance</td>
</tr>
<tr>
<td>ENR</td>
<td>Enroute</td>
</tr>
<tr>
<td>ENT</td>
<td>Enter</td>
</tr>
<tr>
<td>EPE</td>
<td>Estimated Position Error</td>
</tr>
<tr>
<td>ESA</td>
<td>Enroute Safe Altitude</td>
</tr>
<tr>
<td>ETA</td>
<td>Estimated Time of Arrival</td>
</tr>
<tr>
<td>ETE</td>
<td>Estimated Time Enroute</td>
</tr>
<tr>
<td>°F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>FDE</td>
<td>Fault Detection and Exclusion</td>
</tr>
<tr>
<td>FF</td>
<td>Fuel Flow</td>
</tr>
<tr>
<td>FLOW</td>
<td>Total Fuel Flow</td>
</tr>
<tr>
<td>FOB</td>
<td>Fuel On Board</td>
</tr>
<tr>
<td>FPL</td>
<td>Flight Plan</td>
</tr>
<tr>
<td>fpm</td>
<td>Feet Per Minute</td>
</tr>
<tr>
<td>FREQ</td>
<td>Frequency</td>
</tr>
<tr>
<td>FSS</td>
<td>Flight Service Station</td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>G/S</td>
<td>Glideslope</td>
</tr>
<tr>
<td>gl</td>
<td>Gallons</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GS</td>
<td>Ground Speed</td>
</tr>
<tr>
<td>HDG</td>
<td>Heading</td>
</tr>
<tr>
<td>hg</td>
<td>Inches of Mercury</td>
</tr>
<tr>
<td>HUL</td>
<td>Horizontal Uncertainty Level</td>
</tr>
<tr>
<td>HWY</td>
<td>Highway</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>ig</td>
<td>Imperial Gallons</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>IND</td>
<td>Indicated</td>
</tr>
<tr>
<td>INT</td>
<td>Intersection</td>
</tr>
<tr>
<td>INTEG</td>
<td>Integrity</td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
</tr>
<tr>
<td>kHz</td>
<td>Kilohertz</td>
</tr>
<tr>
<td>km</td>
<td>Kilometers</td>
</tr>
<tr>
<td>kph</td>
<td>Kilometers Per Hour</td>
</tr>
<tr>
<td>kt</td>
<td>Knots</td>
</tr>
<tr>
<td>LAT/LON</td>
<td>Latitude/Longitude</td>
</tr>
<tr>
<td>lb</td>
<td>Pounds</td>
</tr>
<tr>
<td>LCL</td>
<td>Local</td>
</tr>
<tr>
<td>LFOB</td>
<td>Left-over Fuel On Board</td>
</tr>
<tr>
<td>LOC</td>
<td>Localizer</td>
</tr>
<tr>
<td>LRES</td>
<td>Left-over Fuel Reserve Time</td>
</tr>
<tr>
<td>Lrg</td>
<td>Large</td>
</tr>
<tr>
<td>lt</td>
<td>Liters</td>
</tr>
<tr>
<td>°M</td>
<td>Degrees Magnetic</td>
</tr>
<tr>
<td>m</td>
<td>Meters</td>
</tr>
<tr>
<td>mb</td>
<td>Millibars of Pressure</td>
</tr>
<tr>
<td>Med</td>
<td>Medium</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>mi</td>
<td>Statute Miles</td>
</tr>
<tr>
<td>MOA</td>
<td>Military Operations Area</td>
</tr>
<tr>
<td>mph</td>
<td>Statute Miles Per Hour</td>
</tr>
<tr>
<td>mpm</td>
<td>Meters Per Minute</td>
</tr>
<tr>
<td>mps</td>
<td>Meters Per Second</td>
</tr>
<tr>
<td>MSA</td>
<td>Minimum Safe Altitude</td>
</tr>
<tr>
<td>MSG</td>
<td>Message</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>mul</td>
<td>Multicom</td>
</tr>
<tr>
<td>NATNL</td>
<td>National</td>
</tr>
<tr>
<td>NAV</td>
<td>Navigation</td>
</tr>
<tr>
<td>NAVAID</td>
<td>Navigational Aid</td>
</tr>
<tr>
<td>NDB</td>
<td>Non-directional Radio Beacon</td>
</tr>
<tr>
<td>nm</td>
<td>Nautical Miles</td>
</tr>
<tr>
<td>NRST</td>
<td>Nearest</td>
</tr>
<tr>
<td>NUM</td>
<td>Number</td>
</tr>
<tr>
<td>OBS</td>
<td>Omnibearing Selector</td>
</tr>
<tr>
<td>OCN</td>
<td>Oceanic</td>
</tr>
</tbody>
</table>
SECTION 12 – MESSAGES, ABBREVIATIONS, & NAV TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.POS</td>
<td>Present Position</td>
</tr>
<tr>
<td>PROC</td>
<td>Procedure(s)</td>
</tr>
<tr>
<td>PROV</td>
<td>Province</td>
</tr>
<tr>
<td>PWR</td>
<td>Power</td>
</tr>
<tr>
<td>RAD</td>
<td>Radial</td>
</tr>
<tr>
<td>RAIM</td>
<td>Receiver Autonomous Integrity Monitoring</td>
</tr>
<tr>
<td>REF</td>
<td>Reference</td>
</tr>
<tr>
<td>REQ</td>
<td>Required/Requirements</td>
</tr>
<tr>
<td>RESTRICTD</td>
<td>Restricted</td>
</tr>
<tr>
<td>RNG</td>
<td>Range</td>
</tr>
<tr>
<td>RX</td>
<td>Receive</td>
</tr>
<tr>
<td>SID</td>
<td>Standard Instrument Departure</td>
</tr>
<tr>
<td>Sml</td>
<td>Small</td>
</tr>
<tr>
<td>SPD</td>
<td>Speed</td>
</tr>
<tr>
<td>SQ</td>
<td>Squelch</td>
</tr>
<tr>
<td>SRFC</td>
<td>Surface</td>
</tr>
<tr>
<td>STAR</td>
<td>Standard Terminal Arrival Route</td>
</tr>
<tr>
<td>SUA</td>
<td>Special Use Airspace</td>
</tr>
<tr>
<td>°T</td>
<td>Degree True</td>
</tr>
<tr>
<td>TACAN</td>
<td>Tactical Air Navigation</td>
</tr>
<tr>
<td>TAS</td>
<td>True Airspeed</td>
</tr>
<tr>
<td>TAT</td>
<td>Total Air Temperature</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temperature</td>
</tr>
<tr>
<td>TERM</td>
<td>Terminal</td>
</tr>
<tr>
<td>TKE</td>
<td>Track Angle Error</td>
</tr>
<tr>
<td>TMA</td>
<td>ICAO Terminal Control Area</td>
</tr>
<tr>
<td>TRANS</td>
<td>Transition</td>
</tr>
<tr>
<td>TRFC</td>
<td>Traffic</td>
</tr>
<tr>
<td>TRK</td>
<td>Track (also Ground Track)</td>
</tr>
<tr>
<td>TRSA</td>
<td>Terminal Radar Service Area</td>
</tr>
<tr>
<td>twr</td>
<td>Tower</td>
</tr>
<tr>
<td>TX</td>
<td>Transmit</td>
</tr>
<tr>
<td>uni</td>
<td>Unicom</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time (also GMT or Zulu)</td>
</tr>
<tr>
<td>VAR</td>
<td>Variation</td>
</tr>
<tr>
<td>VER</td>
<td>Version</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VNAV</td>
<td>Vertical Navigation</td>
</tr>
<tr>
<td>VOL</td>
<td>Volume</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF (Very High Frequency) Omnidirectional Radio Range</td>
</tr>
<tr>
<td>VS</td>
<td>Vertical Speed</td>
</tr>
<tr>
<td>VSR</td>
<td>Vertical Speed Required</td>
</tr>
<tr>
<td>WPT</td>
<td>Waypoint</td>
</tr>
<tr>
<td>WX</td>
<td>Weather</td>
</tr>
<tr>
<td>XTK</td>
<td>Crosstrack Error</td>
</tr>
</tbody>
</table>
12.3 NAVIGATION TERMS

The following navigation terms are used on the GPS 400 and in this Pilot's Guide. Refer to Figures 12-1 and 12-2 for graphic representation of navigation terms.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (altitude)</td>
<td>Height above mean sea level (MSL)</td>
</tr>
<tr>
<td>BRG (bearing)</td>
<td>The compass direction from the present position to a destination waypoint</td>
</tr>
<tr>
<td>CAS (calibrated airspeed)</td>
<td>Indicated airspeed corrected for instrument errors</td>
</tr>
<tr>
<td>CTS (course to steer)</td>
<td>The recommended direction to steer in order to reduce course error or stay on course. Provides the most efficient heading to get back to the desired course and proceed along the flight plan</td>
</tr>
<tr>
<td>CUM (cumulative)</td>
<td>The total of all legs in a flight plan (cumulative distance)</td>
</tr>
<tr>
<td>DIS (distance)</td>
<td>The “great circle” distance from the present position to a destination waypoint</td>
</tr>
<tr>
<td>DOP (dilution of precision)</td>
<td>A measure of satellite geometry quality on a scale of one to ten (lowest numbers are best, highest numbers are worst)</td>
</tr>
<tr>
<td>DTK (desired track)</td>
<td>The desired course between the active “from” and “to” waypoints</td>
</tr>
<tr>
<td>EFF (efficiency)</td>
<td>A measure of fuel consumption, expressed in distance per fuel units (e.g., nautical miles per gallon)</td>
</tr>
<tr>
<td>ENDUR (endurance)</td>
<td>Flight endurance, or total available flight time based upon available fuel</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>EPE (estimated position error)</td>
<td>A measure of satellite geometry quality and additional factors, expressed as a horizontal position error in feet or meters</td>
</tr>
<tr>
<td>ESA (enroute safe altitude)</td>
<td>The recommended minimum altitude within ten miles, left or right, of the desired course on an active flight plan or direct-to</td>
</tr>
<tr>
<td>ETA (estimate time of arrival)</td>
<td>The estimated time at which the aircraft will reach the destination waypoint, based upon current speed and track</td>
</tr>
<tr>
<td>ETE (estimated time enroute)</td>
<td>The time it will take to reach the destination waypoint, from present position, based upon current ground speed</td>
</tr>
<tr>
<td>FF (fuel flow)</td>
<td>The fuel flow rate, expressed in fuel units per time (e.g., gallons per hour)</td>
</tr>
<tr>
<td>FOB (fuel on board)</td>
<td>The total amount of usable fuel on board the aircraft</td>
</tr>
<tr>
<td>GS (ground speed)</td>
<td>The velocity of the aircraft relative to a ground position</td>
</tr>
<tr>
<td>HDG (heading)</td>
<td>The direction an aircraft is pointed, based upon indications from a magnetic compass or a properly set directional gyro</td>
</tr>
<tr>
<td>IND (indicated)</td>
<td>Information provided by properly calibrated and set instrumentation in the aircraft panel (e.g., indicated altitude)</td>
</tr>
<tr>
<td>LFOB (left-over fuel onboard)</td>
<td>The amount of fuel remaining on board after the completion of a one or more legs of a flight plan (or a direct-to)</td>
</tr>
<tr>
<td>LRES (left-over fuel reserve)</td>
<td>The amount of fuel remaining on board after the completion of a one or more legs of a flight plan (or a direct-to), expressed in time and based upon a known fuel consumption (flow) rate</td>
</tr>
<tr>
<td>MSA (minimum safe altitude)</td>
<td>Uses Grid Minimum Off-route Altitudes (Grid MORAs) to determine a safe altitude within ten miles of the present position. Grid MORAs are one degree latitude by one degree longitude in size and clear all reference points within the grid by 1000 feet in areas where the highest reference point is 5000 feet MSL or lower. If the highest reference point is above 5000 feet, the Grid MORA will clear the highest reference point by 2000 feet</td>
</tr>
<tr>
<td>TKE (track angle error)</td>
<td>The angle difference between the desired track and the current track. An arrow indicates the proper direction to turn to reduce TKE to zero</td>
</tr>
<tr>
<td>TRK (track)</td>
<td>The direction of movement relative to a ground position; also referred to as “ground track”</td>
</tr>
<tr>
<td>VSR (vertical speed required)</td>
<td>The vertical speed necessary to descend/climb from current position and altitude to a defined target position and altitude, based upon current ground speed</td>
</tr>
<tr>
<td>XTK (crosstrack error)</td>
<td>The distance the aircraft is off a desired course in either direction, left or right</td>
</tr>
</tbody>
</table>
APPENDIX A: DATA CARD USE

The Jeppesen NavData Card, and the Terrain Data Card (if applicable) supplied with the GPS 400 can be installed or removed when the GPS 400 is on or off. If the NavData Card is not present when the unit is turned on, a ‘No Jeppesen Aviation Database - Limited to user defined waypoints’ message appears on the Database Confirmation Page. If the NavData Card is removed during operation, a ‘Data card removed - Unit will restart in 30 seconds’ warning is displayed. A counter begins to count down and, if the card is not replaced within 30 seconds, the GPS 400 automatically re-initializes. Pressing the ENT Key will manually re-initialize the unit.

NOTE: There are two data card slots on the face of the GPS 400 (Figure A-1). The Jeppesen NavData Card should be inserted in the left-hand slot. The right-hand slot is provided for the Terrain Data Card.

To insert the NavData or Terrain Data card (Figure A-2):

1) Place the card into the appropriate card slot, with the label facing to the left and the swing arm handle at the bottom front.

2) Press the data card into place until it seats on the internal connector and the front of the card is flush with the face of the GPS 400 unit.

3) If the swing arm handle is up, gently lower the handle and push it into place—flush with the face of the GPS 400 unit.
To remove the NavData or Terrain data card (Figure A-2):

1) Gently press on the tab—using a slight upward motion—at the front center of the data card. This partially deploys the swing arm handle.

2) Rotate the swing arm handle upward (and outward) until it locks into place, perpendicular to the face of the GPS 400 unit.

3) Grasp the top and bottom surfaces of the swing arm handle between your thumb and forefinger, and pull directly away from the face of the GPS 400 unit to remove the data card.
APPENDIX B: SPECIFICATIONS

PHYSICAL
Unit Size: 6.25’W x 11.00’D x 2.65’H
(159 mm x 279 mm x 67 mm)
Unit Weight: 4.9 pounds installed (2.2 kg)

POWER
Input: 11-33 Vdc (-0X version)
13.8/27.5 Vdc (-1X version)

ENVIRONMENTAL
Temperature: -20°C to +55°C (operating range)
(-4°F to +131°F)
Humidity: 95% non-condensing
Altitude: -1,500 ft to 50,000 ft
(-457 m to 15,240 m)

GPS PERFORMANCE
Receiver: 12 parallel channel PhaseTrac12™
Acquisition Time: 12 seconds (warm)
45 seconds (cold)
Update Rate: Once per second, continuous
Accuracy: Position - 15 meters (49 ft) RMS
Velocity - 0.1 knot RMS steady state
Dynamics: 999 kts maximum velocity
6g maximum acceleration

INTERFACES
ARINC 429;
Aviation RS-232;
CDI/HSI;
RMI (digital:clock/data);
Superflag Out;
Altitude (serial: Icarus, Shadin, Rosetta, or
encoded: Gillham/Greycode);
Fuel Sensor; Fuel/Air Data
This section is designed to answer some of the common questions regarding the GPS 400's capabilities and operation. If there is a problem operating the unit, read through this appendix and refer to the reference section noted. If the answer to a particular question is not covered here, use the index to find the appropriate section elsewhere in this manual. If, after reading through the appropriate reference section, the answer cannot be found, please see an authorized dealer or contact Garmin directly at the address or phone numbers listed on page ii. Garmin is dedicated to supporting its products and customers.

What is RAIM, and how does it affect approach operations?

RAIM is an acronym for Receiver Autonomous Integrity Monitoring, a GPS receiver function that performs a consistency check on all tracked satellites. RAIM ensures that the available satellite geometry allows the receiver to calculate a position within a specified protection limit (4 nm for oceanic, 2 nm for enroute, 1 nm for terminal and 0.3 nm for non-precision approaches).

During oceanic, enroute, and terminal phases of flight, RAIM is available nearly 100% of the time. Because of the tighter protection limit on approaches, there may be times when RAIM is not available. The automatically monitors RAIM and warns the pilot with an alert message (Section 12) when it is not available, and the INTEG annunciator appears at the bottom left corner of the screen. If RAIM is not available when crossing the FAF, the pilot must fly the missed approach procedure. The GPS 400's RAIM prediction function (Section 11) also allows the pilot to see whether RAIM is available for a specified date and time.

Why aren’t there any approaches available for my flight plan?

Approaches are available for the final destination airport in a flight plan or as a direct-to (keep in mind that some VOR/VORTAC identifiers are similar to airport identifiers). If a destination airport does not have a GPS approach, the approach field indicates ‘NONE’ as listed on the Airport Approach Page (Figure C-1). For more information on selecting an approach, see Section 5.1.

NOTE: If RAIM is not predicted to be available for the final approach course, the approach does not become active—as indicated by an ‘Approach is not active’ message, a ‘RAIM not available from FAF to MAP’ message, and INTEG annunciator.
What happens when I select an approach?
Can I store a flight plan with an approach, departure, or arrival?

When loading an approach, departure, or arrival into the active flight plan, a set of approach, departure, or arrival waypoints is inserted into the flight plan—along with a header line describing the instrument procedure (Figure C-2). The original enroute portion of the flight plan remains active, unless the pilot activates the instrument procedure, which may be done when the procedure is loaded or at a later time.

![Figure C-2 Active Flight Plan Page](image)

Flight plans can also be stored with an approach, departure, or arrival. Keep in mind that the active flight plan is erased when the unit is turned off and overwritten when another flight plan is activated. When storing flight plans with an approach, departure, or arrival, the GPS 400 uses the waypoint information from the current database to define the waypoints. If the database is changed or updated, the GPS 400 automatically updates the information if the procedure has not been modified. If an approach, departure, or arrival procedure is no longer available, the flight plan becomes locked until the procedure is deleted from the flight plan or the correct database is installed. For information on loading an approach, departure, or arrival, see Section 5.1. See Section 4.1 for instructions on saving and copying flight plans.

Can I file slant Golf (’/G’) using my GPS?

Yes, the pilot may file the flight plan as ‘/G’ if the GPS 400 is a certified A1 or A2 installation. If flying enroute, the pilot may file /G with an expired database only after having verified all route waypoints. Non-precision approaches may not be flown with an expired database. See an approved Airplane Flight Manual Supplement for more information.

What does the OBS key do and when do I use it?

The OBS Key is used to select manual (OBS mode) or automatic sequencing of waypoints (Table C-1). Activating OBS mode (as indicated by an OBS annunciation directly above the OBS Key) holds the current “active to” waypoint as the navigation reference and prevents the GPS from sequencing to the next waypoint. When OBS mode is cancelled, automatic waypoint sequencing is selected, and the GPS 400 automatically selects the next waypoint in the flight plan once the aircraft has crossed the present active-to waypoint.
<table>
<thead>
<tr>
<th>NORMAL (no ‘OBS’ annunciator)</th>
<th>OBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic sequencing of waypoints</td>
<td>Manual sequencing: ‘holds’ on selected waypoint</td>
</tr>
<tr>
<td>Change in HSI does not affect CDI deflection</td>
<td>Manually select course to next waypoint from HSI</td>
</tr>
<tr>
<td>Always navigates ‘TO’ the active waypoint</td>
<td>Indicates ‘TO’ or ‘FROM’ waypoint</td>
</tr>
<tr>
<td>Must be in this mode for final approach course</td>
<td>Cannot be set for final approach course or published holding patterns</td>
</tr>
</tbody>
</table>

C-1 Automatic vs Manual Sequencing

When OBS mode is active, the GPS 400 allows the pilot to select the desired course to/from a waypoint using the HSI (much like a VOR) and display a to/from flag for the active-to waypoint. If an external course input is not available, select the OBS course on-screen, via a ‘Select OBS Course pop-up window. With OBS mode cancelled, the CDI always displays a ‘TO’ indication for the next waypoint once the aircraft has crossed the active waypoint (provided the active waypoint is not the last waypoint). Refer to Section 5.2 for an example using the OBS Key.

One application for the OBS Key is holding patterns. The OBS Key is used to suspend waypoint sequencing and select the desired course along the waypoint side of the hold. For many approach operations, setting and resetting of waypoint sequencing is automatic. Holding patterns that are part of an approach automatically disable waypoint sequencing, then re-enable waypoint sequencing after one time around the holding pattern. A ‘SUSP’ annunciation appears directly above the OBS Key (Figure C-3) to indicate that automatic waypoint sequencing is temporarily suspended and course selection is not available. If more than one trip around the holding pattern is desired, press the OBS Key to again suspend waypoint sequencing. An example of this operation is an approach which begins with a holding pattern at the initial approach fix (IAF). See Section 5.2, Flying an Approach with a Hold for more information on the ‘SUSP’ annunciation and approaches with holding patterns.

Figure C-3 ‘SUSP’ Annunciation
When should I use the OBS key to return to auto sequencing, and what happens when I do?

The most common application for using the OBS Key is the missed approach. The GPS 400 suspends automatic waypoint sequencing (indicated by a ‘SUSP’ annunciation directly above the OBS Key; see Figure C-4) when the aircraft crosses the missed approach point (MAP). This prevents the GPS 400 from automatically sequencing to the missed approach holding point (MAHP). If a missed approach is required, press the OBS Key to return to automatic waypoint sequencing and sequence the approach to the MAHP. See Section 5.2, Flying the Missed Approach for more information on missed approaches.

Why won’t my unit automatically sequence to the next waypoint?

The GPS 400 only sequences flight plan waypoints when automatic sequencing is enabled (i.e., no ‘OBS’ or ‘SUSP’ annunciation directly above the OBS Key). For automatic sequencing to occur, the aircraft must also cross the bisector of the turn being navigated. The bisector is a perpendicular line between two flight plan legs which crosses through the waypoint common to both legs.

How do I skip a waypoint in an approach, departure, or arrival?

The GPS 400 allows the pilot to manually select any approach, departure, or arrival leg as the active leg of the flight plan. This procedure is performed from the Active Flight Plan Page by highlighting the desired waypoint and pressing the Direct-to Key twice, then press the ENT Key to approve the selection (Figure C-5). The GPS then provides navigation along the selected flight plan leg, so be sure to have clearance to that position. See Section 4.2, Shortcuts for more information.

How do I fly the GPS with an autopilot and heading indicator heading bug?

If the installation does not have an HSI, the pilot should make the course selections on the external CDI’s OBS Knob and the heading indicator heading bug.
When does turn anticipation begin, and what bank angle is expected?

The GPS 400 smooths adjacent leg transitions based upon a nominal 15° bank angle (with the ability to roll up to 25°) and provide three pilot cues for turn anticipation:

1) A waypoint alert (‘NEXT DTK ###°’) flashes in the lower right corner of the screen 10 seconds before the turn point (Figure C-6).

2) A flashing turn advisory (‘TURN TO ###°’) appears in the lower right corner of the screen when the aircraft is to begin the turn. Set the HSI to the next DTK value and begin the turn.

3) The To/From indicator on the HSI (or CDI) flips momentarily to indicate that the aircraft has crossed the midpoint of the turn. For more information on waypoint alerts and turn advisories, see Sections 5.2 and 5.3.

When does the CDI scale change, and what does it change to?

If ‘Auto’ mode is selected for the CDI setting, when leaving the departure airport the CDI scale is set to 1.0 nm and gradually ramps up to 5 nm beyond 30 nm (from the departure airport).

Also, in ‘Auto’ mode, the GPS 400 begins a smooth CDI scale transition from the 5.0 nm (enroute/oceanic mode) to the 1.0 nm (terminal mode) scale 30 nm from the destination airport (Figure C-7). The CDI scale further transitions to 0.3 nm (approach mode) at 2 nm prior to the FAF during an active approach. During a missed approach situation to return the CDI to the 1.0 nm scale, activate the missed approach sequence by pressing the OBS Key, as described in Section 5.2, Flying the Missed Approach.
Why does my CDI not respond like a VOR when OBS mode is active?

Unlike a VOR, the CDI scale used on GPS equipment is based on the cross-track distance to the desired course, not an angular relationship to the destination (Figure C-8). Therefore, the CDI deflection on the GPS is constant regardless of the distance to the destination, and does not become less sensitive when further away from the destination. For more information on the CDI scale, see Section 8.4.

![Figure C-8 CDI Comparison](image)

What is the correct missed approach procedure? How do I select the missed approach holding point?

To comply with TSO specifications, the GPS 400 does not automatically sequence past the MAP. The active-to waypoint sequences to the first waypoint in the missed approach procedure when the OBS Key is pressed after crossing the MAP. All published missed approach procedures must be followed, as indicated on the approach plate.

To execute the missed approach procedure prior to the MAP (not recommended), select the Active Flight Plan Page, highlight the MAHP, press the Direct-to Key, and then press the ENT Key twice.

How do I re-select the same approach or activate a new approach after a missed approach?

After flying all missed approach procedures, the pilot may reactivate the same approach for another attempt from the Procedures Page. Once given clearance for another attempt, activate the approach from the Procedures Page by highlighting ‘Activate Approach?’ and pressing the ENT Key. The GPS 400 provides navigation along the desired course to the waypoint and rejoins the approach in sequence from that point on. See Section 4.2, Active Flight Plan Options, for information on activating a specific flight plan leg.

Activating a new approach for the same airport:

1) Press the PROC Key.
2) Turn the large right knob to highlight ‘Select Approach?’.
3) Press the ENT Key.
4) Turn the large right knob to highlight the new desired approach.
5) Press the ENT Key to select the approach, then select the desired transition.
6) Highlight ‘Activate?’ at the bottom right corner of the screen and press the ENT Key to activate the new approach.

Activating a new approach to a different airport:

1) Press the Direct-to Key.
2) Select the desired airport using the small and large right knobs.
3) Press the ENT Key to accept the selected airport, then follow the steps in the preceding paragraph to select an approach for the new airport. See Section 5.1 for more information on selecting and activating approaches.
A
Abbreviations 6-4, 6-6, 6-7, 6-13, 6-14, 6-15, 12-8
Accessories 1-1
Activate an existing flight plan in reverse 4-4
Activate leg 4-11, 4-16, C-4
Activate the approach 5-4, 5-10, C-6
Activating flight plans 4-3
Active flight plan options 4-9, 4-11–4-14
Active leg 1-11, 2-3, 4-10, 5-7, 5-8, 5-11, 5-13, 5-17, 5-18,
5-21, 5-26, C-4
Airport Approach Page 6-8, 6-9, C-1
Airport Arrival Page 6-10
Airport Departure Page 6-12
Airport Frequency Page 6-6
Airport Location Page 6-2, 6-4, 7-4
Airport Runway Page 6-5
Airport type 6-4, 6-6, 6-7
Airspace alert messages 1-16, 7-11, 8-23
Airspace information 1-16
Altitude 2-20, 2-24, 2-25, 2-26, 12-1, 12-8
Altitude buffer 7-11, 8-20, 8-22, 8-23
Annunciator 1-8, 1-16, 2-17, 9-7, 9-9, 12-1, C-1, C-3
Approach, best available 6-4
Approach procedures 5-1, 5-8, 5-9, 5-13, 5-17, 5-20, 6-8,
C-6
Arrivals 1-4, 1-13, 4-10, 4-13, 4-15, 5-1, 6-1, 6-10, 12-3
Arrival alarm 8-20, 8-21, 8-24, 12-2
Automatic sequencing C-3
Automatic zoom 2-10, 2-12
Auto Request 10-22, 10-27–10-29
AUX Page Group 8-1
Aviation data 2-12, 2-16

B
Backlighting 8-28, 8-29, 12-2, 12-3
Bearing 1-10, 1-11, 2-3, 2-7, 2-13, 2-14, 2-21, 2-22, 4-10,
4-14, 7-4, 7-5, 7-6, 7-7, 7-8, 12-8, 12-11

C
CDI Scale 2-2, 5-11, 5-15, 5-19, 8-20, 8-21, 8-23, 8-24, C-5,
C-6
Ceiling and Visibility Graphics 10-35
Checklists 1-7, 8-12, 8-14, 8-15
Closest point of flight plan 12-4
CLR Key 1-3
Contrast 8-28, 8-29
Copying flight plans C-2
Course from fix flight plan 5-21
Creating a flight plan 5-5
Creating user waypoints 6-15, 6-17
Crossfill 2-5, 4-7, 6-20, 8-2, 8-8, 8-9, 8-10

D
Database Confirmation Page 1-6, A-1
Database subscriptions 1-6
Data fields 1-11, 2-5, 2-7, 2-13, 2-14, 2-20, 2-22, 4-11, 8-5
Data Link Request Log Page 10-26
Data Link Status Page 10-32
Date and time 8-3, 8-11, 8-18, 8-22, C-1
Declutter 1-10, 2-7
Default NAV Page 1-9, 2-2
Delete user waypoints 12-2
Deleting flight plans 4-5
Density altitude 8-1, 8-2, 8-3, 8-7
Departures 1-4, 1-13, 4-10, 4-13, 4-15, 5-1, 5-25, 6-1, 6-12,
12-3
Departure time 8-7, 8-12, 8-16
Desired track 1-10, 1-11, 2-3, 2-7, 4-9, 5-15, 5-24, 5-26,
8-3, 12-6, 12-11, 12-12
Direct-to cancelling 3-5
Direct-to Key 1-3
Direct-to navigation 1-10, 3-5
Display backlighting 12-2, 12-3
Display contrast 8-28, 8-29
Distance measurements (on map) 2-13
DIS (distance) 1-10, 1-11, 2-3, 2-4, 2-7, 4-9, 4-11, 5-6, 5-15,
5-21, 5-24, 6-13, 6-15, 6-16, 6-19, 8-3, 8-7, 8-25,
12-8, 12-11
DME Arc 2-3, 4-14
DOP (dilution of precision) 2-23, 2-24, 11-1, 12-3, 12-8
Duplex operations 7-8
Duplicate waypoints 6-3
INDEX

E

ENT Key 1-3
EPE (estimated position error) 2-23, 2-24, 11-1, 12-8
ETA (estimated time of arrival) 2-3, 4-11, 8-3, 8-7, 12-8, 12-12
ETE (estimated time enroute) 1-11, 2-3, 4-11, 8-3, 8-7, 12-8, 12-12

F

FDE (fault detection and exclusion) 1-8, 11-1, 11-2, 12-8
Field elevation 6-4
Flight phases 8-13, 8-18, 11-1
Flight Planning Page 8-1, 8-2, 8-4, 8-6, 8-7, 8-8
Flight plans 1-4, 1-5, 1-17, 3-2, 4-1, 4-6, 4-7, 4-8, 8-2, 8-3, 8-9, 12-2, 12-4, 12-6, C-2
Flight Plan Catalog 1-17, 1-18, 4-1-4-10, 5-4
Flight plan catalog options 1-17, 1-18, 4-1, 4-4-4-8
Flight timers 8-15, 8-16
Forecast Abbreviations 10-34
FPL Key 1-4
Frequency usage restrictions 2-19
Fuel planning 8-1, 8-2, 8-3, 8-4
Full screen map 2-13

G

GDL 49 10-18
GDL 69/69A 10-18
Generic timer 8-15, 8-16
GPS receiver status 2-23, 2-24
Graphic “track” indicator 2-20
Ground speed 1-10, 1-11, 2-3, 2-7, 2-14, 2-20, 2-24, 5-24, 5-26, 8-3, 8-5, 8-7, 8-12, 8-16, 8-17, 12-12
Ground track 1-10, 1-11, 2-3, 2-20, 12-12
Gust Offset Graphics 10-35

H

Hold, in an approach 5-9, 5-23, C-3
Holding pattern 4-16, 5-9, 5-10, 5-11, 5-12, 5-24, C-3
Hold (waypoint) 5-9, 5-11, 5-24

I

IFR procedures 1-13
Insert the data card A-1
Instrument Panel Self-Test Page 1-6
INTEG annunciator C-1
Intersections 1-10, 1-14, 6-1, 7-1, 7-2, 7-5
Intersection Page 6-13
Inverting flight plans 4-4
IOI (imminent obstacle impact) 9-5
ITI (imminent terrain impact) 9-5

K

Keys and knobs 1-2, 1-3

L

Land data 1-5, 2-10, 2-12, 12-5
Land Data Page 1-5
Left-hand keys and knobs 1-3
Loading an approach C-2
Local time 8-22, 8-26, 8-27
Locked waypoints 12-2

M

Magnetic variation 6-14, 8-21, 8-24
Main page groups 7-1, 8-1
Manual sequence 5-21, 5-25
MAP (missed approach point) 3-1, 5-3
Map datums 8-20, 8-22, 8-26
Map direct-to 2-8
Map orientation 2-10, 2-11
Map Page 1-10, 2-5, 2-6, 2-7, 2-10, 2-14, 3-5, 5-7, 5-8, 5-13, 5-17, 5-18, 5-24, 6-15, 6-17, 8-20, 12-5
Map page options 2-10
Map panning 2-7
Map range 1-2, 1-3, 1-10, 2-6, 2-7, 2-12
Map setup 2-6
Max speed 8-17
Measurement units 1-5, 8-20, 8-21, 8-24, 8-25
MENU Key 1-3
Messages 1-4, 1-16, 2-24, 2-27, 7-11, 8-3, 8-9, 8-10, 8-11, 8-22, 8-23, 12-1
Message Page 1-8, 1-16
METAR 10-18, 10-34
Missed approach 3-1, 5-3, 5-8–5-11, 5-13, 5-17, 5-20, 5-22, 5-23, 5-24, 5-26, 12-5, C-1, C-4, C-5, C-6
Mode S 10-1
MSA (minimum safe altitude) 2-3, 2-20, 12-9, 12-12
MSG Key 1-4

N

NAV/COM Page 1-9, 1-12, 2-18, 2-19
NAVAID iv, 2-10, 2-21, 12-9
NavData Card 1-6, 1-13, 2-26, A-1, A-2
Navigation terms 1-10, 1-11, 2-14, 12-11
NAV Page Group 1-5, 2-2
NDB 1-10, 2-6, 2-21, 2-26, 5-3, 6-2, 6-4, 6-14, 6-15, 6-16, 6-19, 7-1, 7-3, 7-6, 12-9
NDB Page 6-14
Nearest airport criteria 8-28, 8-30
Nearest Airport Page 1-15, 7-2, 7-4, 8-28
Nearest Airspace Page 1-16, 7-9
Nearest ARTCC 7-8
Nearest ARTCC Page 7-8
Nearest FSS 7-2, 7-8
Nearest FSS Page 7-8
Nearest Intersection Page 7-5
Nearest NDB Page 7-6
Nearest User Waypoint Page 7-7
Nearest VOR Page 7-6
NEXRAD 10-18–10-20
NEXRAD Intensity 10-20
NEXRAD Request Page 10-21
NOAA 10-20
Non-Bearing Traffic Advisory 10-7
NRST Key 1-4
NRST Page Group 7-1

O

OBS Key 1-4, 5-8, 5-9, 5-11, 5-12, 5-13, 5-17, 5-20, 5-22, 5-23–5-26, 12-1, 12-5, 12-6, C-2–C-6
Odometer 8-17
Overzoom 2-6

P

Packing list 1-1
Page groups 1-3, 2-1, 7-1, 8-1
PDA (premature descent alert) 9-5
Pointer, panning 2-7, 2-8, 2-9, 2-13, 3-5, 6-17
Position format 1-5, 8-22, 8-25
Position Page 2-20, 2-21, 2-22, 12-1, 12-4
Power on 1-3, 1-5
Precipitation Graphics 10-34
Procedures Page 1-13, 5-1–5-4, 5-18, 6-11, 6-13, C-6
Procedure turn 4-16, 5-4, 5-7
PROC Key 1-4, 1-13, 4-10, 5-1, 5-2, 5-3, 5-5, 5-9, 5-10, 5-14, 5-17, 5-18, 5-24, C-6

R

Radar coverage 6-4
RAIM prediction 8-17
RAIM protection limits 8-18
Reference waypoint 2-20, 2-21, 2-22, 2-26, 4-10, 4-14, 6-15, 6-16, 6-17, 6-19, 6-21
Remove the data card A-2
Removing approaches 4-15
Renaming a user waypoint 6-21
Requesting Graphical METARS 10-27
Request METAR 10-25
Request NEXRAD 10-25
Right-hand keys and knobs 1-3
RNG Key 1-3, 2-6, 6-5, 6-6
RNG key 2-16
Roads 2-8, 2-13
RTC (required terrain clearance) 9-5
Runway information 1-14, 7-4

S

Satellite Status Page 1-8, 2-23, 11-1
Scheduler message 12-5
Scroll bar 1-3, 1-4, 2-19, 7-4, 7-6
Select approach 1-13, 4-12, 5-1, 5-4, 5-9, 6-9, C-6
Select arrival 1-13, 4-13, 5-1
Select departure 1-13, 4-13, 5-1
Self test 1-5
Setup 1 Page 8-20, 8-22–8-26
INDEX

Setup 2 Page 8-28, 8-29, 8-32
Shortcuts 3-4, 4-15
SIDs 1-13, 11-2
Signal strength 1-8, 2-23, 2-24
Sky view 2-23
Software/database version 8-12
Sort list 4-6, 4-8, 8-15
Specifications B-1
Squelch 12-10
STARs 1-13, 11-2
Sunrise/sunset times 8-18
SUSP annunciation 5-8, 5-11, 5-13, 5-17, 5-20, 5-22–5-26, 12-1, C-3, C-4
Symbols 2-3, 2-5, 2-6, 2-17, 6-14

T

Target pointer 2-7, 2-8, 2-9, 6-17
TAS (Traffic Advisory System) 10-18
TCAS 10-11
Temp-Dew Point Ranges 10-36
Terms (Nav) 12-1
TERRAIN i, 1-9, 2-15, 2-16, 2-17, 9-1, 9-5, 9-7
TERRAIN Page 1-9, 2-15, 2-16, 2-17, 9-7
Terrain separation iv
Thumbnail Traffic 10-9
Timers 8-12, 8-15
TIS 10-1
Track (TRK) 1-6, 1-10, 1-11, 2-3, 2-7, 2-11, 2-13, 2-14, 2-20, 2-24, 4-9, 5-15, 5-24, 5-26, 8-3, 8-7, 8-21, 12-6, 12-11, 12-12, C-6
Traffic Advisory 10-4
Traffic coasting 10-6
Traffic Page 10-5
Traffic Warning Window 10-7
Transitions 4-12, 4-13, 5-1, 5-5, 5-10, 5-18, 6-8, 6-10, 6-12, 12-3, C-5
Trip planning 8-1, 8-2, 8-3, 8-6
Trip statistics 8-12, 8-17
Turn advisories C-5
Turn anticipation 12-6, C-5

U

Units of measure 1-5, 8-20, 8-21, 8-24, 8-25
User Waypoint List 6-20, 6-21, 6-22
User Waypoint Page 6-15–6-21, 7-7
Utility Page 8-12, 8-14, 8-15, 8-17, 8-18, 8-19

V

Vectors-to-final 2-3, 5-17
Vertical navigation 2-25, 12-1, 12-2, 12-10
VNAV (Vertical Navigation) Page 2-25
VORs 1-10, 1-14, 2-10, 2-16, 3-2, 6-1, 6-14, 7-1, 7-2, 7-6
VOR Page 6-14
VSR (vertical speed required) 2-3, 2-27, 12-10

W

Warranty vi
Waypoint alerts C-5
Waypoint entry 6-2
Waypoint holding C-2, C-3, C-4
Waypoint identifiers 6-2
Waypoint list 6-20, 6-21, 6-22
Waypoint sequencing 5-12, 5-24, 12-1, C-2, C-3, C-4
Weather Age Graphic 10-34
Weather broadcast 6-14
Weather Data Link 10-1, 10-18
Weather Legend Page 10-30
Winds aloft 8-1, 8-2, 8-3, 8-7
Wind Speed Graphics 10-35
WPT Page Group 4-16, 6-1, 6-2